当前位置: 首页 > news >正文

网站建设优化推广杭州保定网站建设报价

网站建设优化推广杭州,保定网站建设报价,外国网站dns,平面设计素材包本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。 文章目录联合熵条件熵联合…

本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。

文章目录

      • 联合熵
      • 条件熵

联合熵

联合集 XY 上, 对联合自信息 I(xy)I(x y)I(xy) 的平均值称为联合熵:

H(XY)=Ep(xy)[I(x⇌y)]=−∑x∑yp(xy)log⁡p(xy)\begin{array}{l} H(X Y)=\underset{p(x y)}{E}[I(x \rightleftharpoons y)] \\ =-\sum_{x} \sum_{y} p(x y) \log p(x y) \end{array} H(XY)=p(xy)E[I(xy)]=xyp(xy)logp(xy)
当有n个随机变量 X=(X1,X2,…,Xn)X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)X=(X1,X2,,Xn) , 有

H(X)=−∑X1,X2,…,Xnp(x1,x2,…,xn)log⁡p(x1,x2,…,xn)H(\mathbf{X})=-\sum_{X_{1}, X_{2}, \ldots, X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right) H(X)=X1,X2,,Xnp(x1,x2,,xn)logp(x1,x2,,xn)
信息熵与热熵的关系

信息熵的概念是借助于热熵的概念而产生的。

  1. 信息熵与热熵含义相似

  2. 信息熵与热熵的区别:

    • 信息熵的不增原理
    • 热熵不减原理
  3. 热熵的减少等于信息熵的增加。

条件熵

联合集 XY\mathbf{X Y}XY 上, 条件自信息I(y/x)I(y / x)I(y/x)的平均值定义为条件熵:

H(Y/X)=Ep(xy)[I(y/x)]=−∑x∑yp(xy)log⁡p(y/x)=∑xp(x)[−∑yp(y/x)log⁡p(y/x)]=∑xp(x)H(Y/x)\begin{array}{l} H(Y / X)=\underset{p(x y)}{E}[I(y / x)]=-\sum_{x} \sum_{y} p(x y) \log p(y / x) \\ =\sum_{x} p(x)\left[-\sum_{y} p(y / x) \log p(y / x)\right]=\sum_{x} p(x) H(Y / x) \end{array} H(Y/X)=p(xy)E[I(y/x)]=xyp(xy)logp(y/x)=xp(x)[yp(y/x)logp(y/x)]=xp(x)H(Y/x)
推广:

H(Xn∣X1,…,Xn−1)=−∑X1,X2,…,Xnp(x1,x2,…,xn)log⁡p(xn∣x1,…,xn−1)\begin{array}{l} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) =-\sum_{X_{1}, X_{2}, \ldots, X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \end{array} H(XnX1,,Xn1)=X1,X2,,Xnp(x1,x2,,xn)logp(xnx1,,xn1)
注意:当有n个随机变量 X=(X1,X2,…,Xn)X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)X=(X1,X2,,Xn)

H(X,Y)=H(Y)+H(X∣Y)=H(X)+H(Y∣X)H(X)=H(X1)+H(X2∣X1)+…+H(Xn∣X1,X2,…,Xn−1)\begin{array}{l} H(X, Y)=H(Y)+H(X \mid Y)=H(X)+H(Y \mid X) \\ H(\mathbf{X}) =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \end{array} H(X,Y)=H(Y)+H(XY)=H(X)+H(YX)H(X)=H(X1)+H(X2X1)++H(XnX1,X2,,Xn1)
注意: H(X∣Y)\mathbf{H}(\mathbf{X} \mid \mathbf{Y})H(XY) 表示已知变量 Y\mathbf{Y}Y 后, 对变量 X\mathbf{X}X 尚存在的平均不确定性(存在疑义)。

已知信源 X=[ABC1/31/31/3]X=\left[\begin{array}{ccc}A & B & C \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right]X=[A1/3B1/3C1/3]Y=[DEF1/103/53/10]Y=\left[\begin{array}{ccc}D & E & F \\ 1 / 10 & 3 / 5 & 3 / 10\end{array}\right]Y=[D1/10E3/5F3/10] ,请快速两个信源的信息熵的关系。

答:H(X) > H(Y)。其实不用计算,由上面可知一个简单的结论,等概率时信息熵最大。

参考文献:

  1. Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  2. Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  3. 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
  4. 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
http://www.shuangfujiaoyu.com/news/7973.html

相关文章:

  • 国外免费网站建设长沙网站seo优化公司
  • 网站能自己做吗seo排名优化软件免费
  • 常州做网站的 武进安徽seo
  • 产品网站怎样做外部链接网站目录扫描
  • 网站界面可以做版权吗网络推广都有什么方式
  • 惠州网站建设效果软文一般发布在哪些平台
  • wordpress企业免费主题是什么意思seo网站营销公司哪家好
  • 怎么替换网站百度广告代运营公司
  • 企业网站模板源代码seo顾问服务 品达优化
  • 专门做网站的公司与外包公司有哪些网站推广的策略
  • 网站每年多少钱厦门seo关键词排名
  • 网站弄论坛形式怎么做北京百度竞价
  • 上海公司注册核名官网怎么进行seo
  • 做鞋原料网站百度seo关键词排名查询工具
  • 如何添加网站 ico图标微博推广方法有哪些
  • 网站搜索排名和什么有关系关键词挖掘方法
  • 百度推广做网站吗整站优化关键词排名
  • 公安局网站备案查询百度联盟app
  • 深圳龙华的学校网站建设北京企业推广
  • 娃派wap自助建站百度top排行榜
  • 英文网站怎么做seowhois域名查询
  • 昆明哪有做网站的好推建站
  • 推广做任务 有哪些网站市场调研数据网站
  • 新疆生产建设兵团财务局网站关键词名词解释
  • 主域名进入网站seo博客大全
  • 江阴做网站优化百度一下你就知道啦
  • 巴中市做网站谷歌网页版入口在线
  • 有什么网站可以做六级题目嘛怎样建立一个网站
  • 建设网站的用途武汉百度seo网站优化
  • 博天网站建设网络百度官网认证多少钱