当前位置: 首页 > news >正文

大丰网站建设价格seo研究

大丰网站建设价格,seo研究,南头外贸网站建设,圣宠宠物网站建设目录 🍔 提升树 🍔 梯度提升树 🍔 举例介绍 3.1 初始化弱学习器(CART树) 3.2 构建第一个弱学习器(CART树) 3.3 构建第二个弱学习器(CART树) 3.4 构建第三个弱学习…

 

目录

🍔 提升树

🍔 梯度提升树

🍔 举例介绍

3.1 初始化弱学习器(CART树)

3.2 构建第一个弱学习器(CART树)

3.3 构建第二个弱学习器(CART树)

3.4 构建第三个弱学习器(CART树)

3.5 最终强学习器

🍔 GBDT算法

🍔 泰坦尼克号案例实战

5.1 导包并选取特征

5.2 切分数据及特征处理

5.3 三种分类器训练及预测

5.4 三种分类器性能评估

🍔 集成算法多样性

6.1 数据样本扰动

6.2 输入属性的扰动

6.3 算法参数的扰动

🍔 小结


学习目标

🍀 掌握提升树的算法原理思想

🍀 了解梯度提升树的原理思想

🍔 提升树

梯度提升树(Grandient Boosting)是提升树(Boosting Tree)的一种改进算法,所以在讲梯度提升树之前先来说一下提升树。

先来个通俗理解:假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。最后将每次拟合的岁数加起来便是模型输出的结果。

上面提到的残差是什么呢?

假设:

  1. 我们前一轮迭代得到的强学习器是:ft-1(x)

  2. 损失函数是:L(y,f​t−1(x))

  3. 本轮迭代的目标是找到一个弱学习器:ht(x)

  4. 让本轮的损失最小化: L(y, ft(x))=L(y, ft−1(x)) + ht(x))

当采用平方损失函数时:

则:

令:R = y - ft-1(x),则:

此处,R 是当前模型拟合数据的残差(residual)

所以,对于提升树来说只需要简单地拟合当前模型的残差。

🍔 梯度提升树

GBDT,全称为Gradient Boosting Decision Tree,即梯度提升决策树(梯度提升树),是一种迭代的决策树算法,也被称作MART(Multiple Additive Regression Tree)。它通过将多个决策树(弱学习器)的结果进行累加来得到最终的预测输出,是集成学习算法的一种,具体属于Boosting类型。

梯度提升树不再使用拟合残差,而是利用最速下降的近似方法,利用损失函数的负梯度作为提升树算法中的残差近似值。

假设: 损失函数仍然为平方损失, 则每个样本要拟合的负梯度为:

此时, 我们发现 GBDT 拟合的负梯度就是残差,或者说对于回归问题,拟合的目标值就是残差。

如果我们的 GBDT 进行的是分类问题,则损失函数变为 logloss,此时拟合的目标值就是该损失函数的负梯度值。

🍔 举例介绍

3.1 初始化弱学习器(CART树)

我们通过计算当模型预测值为何值时,会使得第一个基学习器的平方误差最小,即:求损失函数对 f(xi) 的导数,并令导数为0.


3.2 构建第一个弱学习器(CART树)

由于我们拟合的是样本的负梯度,即:

由此得到数据表如下:

上表中平方损失计算过程说明(以切分点1.5为例):

  1. 切分点1.5 将数据集分成两份 [5.56],[5.56 5.7 5.91 6.4 6.8 7.05 8.9 8.7 9. 9.05]

  2. 第一份的平均值为5.56 第二份数据的平均值为(5.7+5.91+6.4+6.8+7.05+8.9+8.7+9+9.05)/9 = 7.5011

  3. 由于是回归树,每份数据的平均值即为预测值,则可以计算误差,第一份数据的误差为0,第二份数据的平方误差为 :

$(5.70-7.5011)^2+(5.91-7.5011)^2+...+(9.05-7.5011)^2 = 15.72308$

以 6.5 作为切分点损失最小,构建决策树如下:

3.3 构建第二个弱学习器(CART树)

以 3.5 作为切分点损失最小,构建决策树如下:

3.4 构建第三个弱学习器(CART树)

以 6.5 作为切分点损失最小,构建决策树如下:

3.5 最终强学习器

🍔 GBDT算法

1.初始化弱学习器

2.对$m=1,2,\cdots,M$有:

(a)对每个样本$i=1,2,\cdots,N$,计算负梯度,即残差

(b)将上步得到的残差作为样本新的真实值,并将数据$(x_i,r{im}), i=1,2,..N$作为下棵树的训练数据,得到一颗新的回归树$f{m} (x)$其对应的叶子节点区域为$R_{jm}, j =1,2,\cdots,J$。其中J为回归树t的叶子节点的个数。

(c)对叶子区域$j=1,2,\cdots,J$计算最佳拟合值

(d)更新强学习器

(3)得到最终学习器

🍔 泰坦尼克号案例实战

该案例是在随机森林的基础上修改的,可以对比讲解。

数据地址:

http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt

5.1 导包并选取特征

1.数据导入
# 导入数据
import  pandas as pd
# 利用pandas的read.csv模块从互联网中收集泰坦尼克号数据集
titanic=pd.read_csv("data/titanic.csv")
titanic.info() #查看信息
2.人工选择特征pclass,age,sex
X=titanic[['pclass','age','sex']]
y=titanic['survived']
3.特征工程
# 数据的填补
X['age'].fillna(X['age'].mean(),inplace=True)

5.2 切分数据及特征处理

数据的切分
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.25,random_state=22)
将数据转化为特征向量
from sklearn.feature_extraction import DictVectorizer
vec=DictVectorizer(sparse=False)
X_train=vec.fit_transform(X_train.to_dict(orient='records'))
X_test=vec.transform(X_test.to_dict(orient='records'))

5.3 三种分类器训练及预测

4.使用单一的决策树进行模型的训练及预测分析
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()
dtc.fit(X_train,y_train)
dtc_y_pred=dtc.predict(X_test)
print("score",dtc.score(X_test,y_test))
5.随机森林进行模型的训练和预测分析
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier(random_state=9)
rfc.fit(X_train,y_train)
rfc_y_pred=rfc.predict(X_test)
print("score:forest",rfc.score(X_test,y_test))
6.GBDT进行模型的训练和预测分析
from sklearn.ensemble import GradientBoostingClassifier
gbc=GradientBoostingClassifier()
gbc.fit(X_train,y_train)
gbc_y_pred=gbc.predict(X_test)
print("score:GradientBoosting",gbc.score(X_test,y_test))

5.4 三种分类器性能评估

7.性能评估
from sklearn.metrics import classification_report
print("dtc_report:",classification_report(dtc_y_pred,y_test))
print("rfc_report:",classification_report(rfc_y_pred,y_test))
print("gbc_report:",classification_report(gbc_y_pred,y_test))

🍔 集成算法多样性

集成学习中,个体学习器多样性越大越好。通常为了增大个体学习器的多样性,在学习过程中引入随机性。常用的方法包括:对数据样本进行扰动、对输入属性进行扰动、对算法参数进行扰动。

6.1 数据样本扰动

给定数据集,可以使用采样法从中产生出不同的数据子集。然后在利用不同的数据子集训练出不同的个体学习器。

该方法简单有效,使用广泛。

(1)数据样本扰动对于“不稳定学习器”很有效。“不稳定学习器”是这样一类学习器:训练样本稍加变化就会导致学习器有显著的变动,如决策树和神经网络等。

(2)数据样本扰动对于“稳定学习器”无效。“稳定学习器”是这样一类学习器:学习器对于数据样本的扰动不敏感,如线性学习器、支持向量机、朴素贝叶斯、K近邻学习器等。

如Bagging算法就是利用Bootstrip抽样完成对数据样本的自助采样。

6.2 输入属性的扰动

训练样本通常由一组属性描述,可以基于这些属性的不同组合产生不同的数据子集,然后在利用这些数据子集训练出不同的个体学习器。

(1)若数据包含了大量冗余的属性,则输入属性扰动效果较好。此时不仅训练出了多样性大的个体,还会因为属性数量的减少而大幅节省时间开销。同时由于冗余属性多,即使减少一些属性,训练个体学习器也不会很差。

(2)若数据值包含少量属性,则不宜采用输入属性扰动法。

6.3 算法参数的扰动

通常可以通过随机设置不用的参数,比如对模型参数加入小范围的随机扰动,从而产生差别较大的个体学习器。

在使用交叉验证法(GridSearch网格搜索)来确定基学习器的参数时,实际上就是用不同的参数训练出来了多个学习器,然后从中挑选出效果最好的学习器。集成学习相当于将所有这些学习器利用起来了。

随机森林学习器就结合了数据样本的扰动及输入属性的扰动。

🍔 小结

🍬 提升树中的每一个弱学习器通过拟合残差来构建强学习器

🍬 梯度提升树中的每一个弱学习器通过拟合负梯度来构建强学习器

http://www.shuangfujiaoyu.com/news/42937.html

相关文章:

  • 自己做视频网站犯法线下推广渠道和方式
  • 宁波网站推广软件服务民宿平台搜索量上涨
  • 个人做网站做什么样的话seo点击软件
  • 在那个网站做服装批发seo赚钱项目
  • 山西做网站哪个好游戏广告推广平台
  • 代理注册公司需要什么资料seo推广怎么学
  • 科技有限公司最低注册资金爱站seo查询软件
  • 网站建设费用 做个网站要多少钱2022智慧树互联网与营销创新
  • 龙华做网站的推广引流图片
  • 国内外c2c网站有哪些网络营销网站有哪些
  • 乐温州网站建设新产品市场推广方案
  • 淄博企业高端网站建设网络舆情分析师
  • 做安全题目是哪个网站拉人注册给佣金的app
  • 成都管控政策最新消息成都seo招聘
  • 北京工程建设质量协会网站优化大师电脑版官方
  • 潍坊网站建设wfxtseo优秀营销软文范例300字
  • wordpress office插件开发黑帽seo技术
  • wordpress类开源网站教育培训网站模板
  • 禹顺生态建设有限公司网站seo论坛站长交流
  • 辽宁建设执业信息网站seo网站推广什么意思
  • 如何在百度上做公司网站福州seo推广公司
  • 微商城搭建平台百度搜索引擎优化的养成良好心态
  • 沧州哪里有做网站的公司4000-外链工厂 外链
  • 做淘宝客没网站吗企业管理培训公司排行榜
  • 深圳市珠宝网站建设网络营销与直播电商好就业吗
  • 大学生ppt免费模板网站北京软件开发公司
  • 网站开发哪家便宜2021搜索引擎排名
  • ecshop做门户网站小红书如何引流推广
  • 一般小型教育网站的建设和开发seo岗位有哪些
  • 学做面食最好的网站合肥seo整站优化网站