当前位置: 首页 > news >正文

成都建工雅安建设有限责任公司网站教师遭网课入侵直播录屏曝光广场舞

成都建工雅安建设有限责任公司网站,教师遭网课入侵直播录屏曝光广场舞,西安网站制作培训,哪里可以做企业网站通过这篇博客,你将清晰的明白什么是过拟合、正则化、惩罚函数。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言…

通过这篇博客,你将清晰的明白什么是过拟合、正则化、惩罚函数。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——过拟合、正则化与惩罚函数》

文章目录

  • 一、过拟合
  • 二、正则化
    • 2.1 正则化的方法
    • 2.2 正则化的效果
  • 三、惩罚函数

一、过拟合

之前我们提到过的模型只能拟合训练数据的状态被称为过拟合,英文是 overfitting。记得在学习回归的时候,过度增加函数 fθ(x)的次数会导致过拟合。过拟合不止在回归时出现,在分类时也经常发生,我们要时常留意它。
避免过拟合有以下方法

  • 增加全部训练数据的数量
  • 使用简单的模型
  • 正则化

首先,重要的是增加全部训练数据的数量。之前我也讲过,机器学习是从数据中学习的,所以数据最重要。另外,使用更简单的模型也有助于防止过拟合。

二、正则化

2.1 正则化的方法

还记得我们在讲解回归的时候提到的目标函数吗?
在这里插入图片描述
我们要向这个目标函数增加下面这样的正则化项:
在这里插入图片描述
那么现在的E(θ)E(\boldsymbol{\theta})E(θ)就变为:
在这里插入图片描述
我们要对这个新的目标函数进行最小化,这种方法就称为正则化
m 是参数的个数,不过一般来说不对 θ0 应用正则化。所以仔细看会发现 j 的取值是从 1 开始的。也就是说,假如预测函数的表达式为 fθ(x) = θ0 + θ1x + θ2x2,那么 m = 2 就意味着正则化的对象参数为 θ1 和 θ2,θ0 这种只有参数的项称为偏置项,一般不对它进行正则化。λ 是决定正则化项影响程度的正的常数。这个值需要我们自己来定。

2.2 正则化的效果

光看表达式可能不容易理解。我们结合图来想象一下吧:首先把目标函数分成两个部分。
在这里插入图片描述
C(θ) 是本来就有的目标函数项,R(θ) 是正则化项。 C(θ) 和 R(θ) 相加之后就是新的目标函数,所以我们实际地把这两个函数的图形画出来,加起来看看。不过参数太多就画不出图来了,所以这里我们只关注 θ1。而且为了更加易懂,先不考虑 λ。
我们先从C(θ) 开始画起,不用太在意形状是否精确。在讲回归的时候,我们说过这个目
标函数开口向上,还记得吗?所以,我们假设它的形状是这样的:

在这里插入图片描述
从图中马上就可以看出最小值在哪里,是在θ1 = 4.5 附近。
在这里插入图片描述
从这个目标函数在没有正则化项时的形状来看,θ1 = 4.5 附近是最小值。接下来是 R(θ),它就相当于12θ12\frac{1}{2} \theta_1^221θ12所以是过原点的简单二次函数
在这里插入图片描述
实际的目标函数是这两个函数之和E(θ) = C(θ) + R(θ),我们来画一下它的图形。顺便考虑一下最小值在哪里。把 θ1 各点上的 C(θ) 和 R(θ) 的高相加,然后用线把它们相连就好:
在这里插入图片描述
从图中我们可以看出来最小值是 θ1 = 0.9,与加正则化项之前相比,θ1 更接近 0 了。本来是在 θ1 = 4.5 处最小,现在是在 θ1 = 0.9 处最小,的确更接近 0 了。这就是正则化的效果。它可以防止参数变得过大,有助于参数接近较小的值。虽然我们只考虑了 θ1,但其他 θj 参数的情况也是类似的。
参数的值变小,意味着该参数的影响也会相应地变小。比如,有这样的一个预测函数 fθ(x):fθ(x)=θ0+θ1x+θ2x2f_{\boldsymbol{\theta}}(\boldsymbol{x})=\theta_0+\theta_1 x+\theta_2 x^2 fθ(x)=θ0+θ1x+θ2x2
极端一点,假设 θ2 = 0,这个表达式就从二次变为一次了,这就意味着本来是曲线的预测函数变为直线了:
在这里插入图片描述
这正是通过减小不需要的参数的影响,将复杂模型替换为简单模型来防止过拟合的方式。

三、惩罚函数

为了防止参数的影响过大,在训练时要对参数施加一些惩罚。比如上面提到的 λ,可以控制正则化惩罚的强度。C(θ)=12∑i=1n(y(i)−fθ(x(i)))2R(θ)=λ2∑j=1mθj2\begin{aligned} & C(\boldsymbol{\theta})=\frac{1}{2} \sum_{i=1}^n\left(y^{(i)}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right)^2 \\ & R(\boldsymbol{\theta})=\frac{\lambda}{2} \sum_{j=1}^m \theta_j^2 \end{aligned} C(θ)=21i=1n(y(i)fθ(x(i)))2R(θ)=2λj=1mθj2
比如令 λ = 0,那就相当于不使用正则化
在这里插入图片描述
λ 越大,正则化的惩罚也就越严厉
在这里插入图片描述

http://www.shuangfujiaoyu.com/news/41147.html

相关文章:

  • 微信公众平台微网站怎么做腾讯云域名注册
  • 怎么做公司网站的手机客户端网站建设知名公司
  • 关于网站建设的介绍百度指数电脑版
  • 做网站主机要选好seo实战培训
  • 建设工程协会网站查询长沙seo行者seo09
  • 网站专业制作杭州seo首页优化软件
  • 网页搜索栏下面的记录怎么删百度seo多少钱一个月
  • 建站快车登陆seo排名优化北京
  • seo网站优化软件seo营销排名
  • 参考消息电子版报纸seo技巧分享
  • 徐城乡建设局网站外贸电商平台哪个网站最好
  • 网站建设企业开发公司app营销模式有哪些
  • 如何用ftp登陆网站上海网站搜索引擎优化
  • 姜堰 做网站怎么引流推广自己的产品
  • 短网址生成系统源码黑帽seo
  • 清新网站模板一键建站免费
  • 学校网站怎么查询录取万网域名交易
  • 上海企业网站备案国家反诈中心app下载
  • 规范贷款网络营销活动郑州百度快照优化排名
  • 淘宝上网站开发退款手机营销软件
  • 个人网站建设详细教程百度查重软件
  • 武汉做网站比较好的公司镇江网站建设推广
  • 泰安卫健委最新消息seo推广排名重要吗
  • 利用小偷程序做网站网络推广方式方法
  • wordpress如何开发手机海淀seo搜索优化多少钱
  • 做网站时的兼容问题总裁班课程培训
  • 响应式网站特点游戏推广员到底犯不犯法
  • b2c网站可分为公司网站设计模板
  • 招标网站官网软文世界
  • wordpress用的编辑器外接电脑突然多了windows优化大师