当前位置: 首页 > news >正文

如何用asp做网站中国seo排行榜

如何用asp做网站,中国seo排行榜,网站运营网站建设,招聘网站怎么做预算使用的是开源模型MusicGen,它可以根据文字描述或者已有旋律生成高质量的音乐(32kHz),其原理是通过生成Encodec token然后再解码为音频,模型利用EnCodec神经音频编解码器来从原始波形中学习离散音频token。EnCodec将音频信号映射到一个或多个并…

使用的是开源模型MusicGen,它可以根据文字描述或者已有旋律生成高质量的音乐(32kHz),其原理是通过生成Encodec token然后再解码为音频,模型利用EnCodec神经音频编解码器来从原始波形中学习离散音频token。EnCodec将音频信号映射到一个或多个并行的离散token流。然后使用一个自回归语言模型来递归地对EnCodec中的音频token进行建模。生成的token然后被馈送到EnCodec解码器,将它们映射回音频空间并获取输出波形。最后,可以使用不同类型的条件模型来控制生成

在这里插入图片描述

准备运行环境

拷贝模型文件

import moxing as mox
mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/MusicGen/model/', 'model')
mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/course/ModelBox/opus-mt-zh-en', 'opus-mt-zh-en')
mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/course/ModelBox/frpc_linux_amd64', 'frpc_linux_amd64')

基于Python3.9.15 创建虚拟运行环境

!/home/ma-user/anaconda3/bin/conda create -n python-3.9.15 python=3.9.15 -y --override-channels --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
!/home/ma-user/anaconda3/envs/python-3.9.15/bin/pip install ipykernel

修改Kernel文件

import json
import osdata = {"display_name": "python-3.9.15","env": {"PATH": "/home/ma-user/anaconda3/envs/python-3.9.15/bin:/home/ma-user/anaconda3/envs/python-3.7.10/bin:/modelarts/authoring/notebook-conda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/anaconda3/envs/PyTorch-1.8/bin"},"language": "python","argv": ["/home/ma-user/anaconda3/envs/python-3.9.15/bin/python","-m","ipykernel","-f","{connection_file}"]
}if not os.path.exists("/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/"):os.mkdir("/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/")with open('/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/kernel.json', 'w') as f:json.dump(data, f, indent=4)print('kernel.json文件修改完毕')

安装依赖

!pip install --upgrade pip
!pip install torch==2.0.1 torchvision==0.15.2
!pip install sentencepiece 
!pip install librosa
!pip install --upgrade transformers scipy
!pip install gradio==4.16.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
!cp frpc_linux_amd64 /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2
!chmod +x /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2

模型测试

模型推理

#@title Default title text 
import torch
from transformers import AutoProcessor, MusicgenForConditionalGeneration, pipelinezh2en = pipeline("translation", model="./opus-mt-zh-en")
prompt = "六一儿童节  男孩专属节奏感强的音乐"
prompt = zh2en(prompt)[0].get("translation_text")
print(prompt)device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = AutoProcessor.from_pretrained("./model/")
model = MusicgenForConditionalGeneration.from_pretrained("./model/")
model.to(device)inputs = processor(text=[prompt],padding=True,return_tensors="pt",
).to(device)# max_new_tokens对应生成音乐的长度,1024表示生成20s长的音乐;
# 目前最大支持生成30s长的音乐,对应max_new_tokens值为1536
audio_values = model.generate(**inputs, max_new_tokens=1024)

生成音频文件

from IPython.display import Audiosampling_rate = model.config.audio_encoder.sampling_rate
if torch.cuda.is_available():audio_data = audio_values[0].cpu().numpy()
else:audio_data = audio_values[0].numpy()Audio(audio_data, rate=sampling_rate)

保存文件

import scipysampling_rate = model.config.audio_encoder.sampling_rate
if torch.cuda.is_available():audio_data = audio_values[0, 0].cpu().numpy()
else:audio_data = audio_values[0, 0].numpy()
scipy.io.wavfile.write("music_out.wav", rate=sampling_rate, data=audio_data)

在这里插入图片描述

图形化生成界面应用

import torch
import scipy
import librosa
from transformers import AutoProcessor, MusicgenForConditionalGeneration, pipelinedef music_generate(prompt: str, duration: int):zh2en = pipeline("translation", model="./opus-mt-zh-en")token = int(duration / 5 * 256)print('token:',token)prompt = zh2en(prompt)[0].get("translation_text")print('prompt:',prompt)device = 'cuda' if torch.cuda.is_available() else 'cpu'processor = AutoProcessor.from_pretrained("./model/")model = MusicgenForConditionalGeneration.from_pretrained("./model/")model.to(device)inputs = processor(text=[prompt],padding=True,return_tensors="pt",).to(device)audio_values = model.generate(**inputs, max_new_tokens=token)sampling_rate = model.config.audio_encoder.sampling_rateif torch.cuda.is_available():audio_data = audio_values[0, 0].cpu().numpy()else:audio_data = audio_values[0, 0].numpy()scipy.io.wavfile.write("music_out.wav", rate=sampling_rate, data=audio_data)audio,sr = librosa.load(path="music_out.wav")return sr, audio
import gradio as grwith gr.Blocks() as demo:gr.HTML("""<h1 align="center">文本生成音乐</h1>""")with gr.Row():with gr.Column(scale=1):prompt = gr.Textbox(lines=1, label="提示语")duration = gr.Slider(5, 30, value=15, step=5, label="歌曲时长(单位:s)", interactive=True)runBtn = gr.Button(value="生成", variant="primary")with gr.Column(scale=1):music = gr.Audio(label="输出")runBtn.click(music_generate, inputs=[prompt, duration], outputs=[music], show_progress=True)demo.queue().launch(share=True)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:- Avoid using `tokenizers` before the fork if possible- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:- Avoid using `tokenizers` before the fork if possible- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 4.16.0, however version 4.29.0 is available, please upgrade.
--------
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:- Avoid using `tokenizers` before the fork if possible- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Running on public URL: https://cd3ee3f9072d7e8f5d.gradio.liveThis share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)

点击链接打开图形界面,如图所示
在这里插入图片描述

http://www.shuangfujiaoyu.com/news/38737.html

相关文章:

  • 品牌建设典型案例和品牌故事西安排名seo公司
  • 我是seo关键词seo工资待遇怎么样
  • wordpress编辑器 代码成都高薪seo
  • PHP开源网站开发系统湖南seo网站策划
  • 北京校园网站建设站长统计app下载免费
  • 工商局网站年检怎么做百度推广后台登陆入口
  • 公关做的好的网站中国最新领导班子
  • 健身房网站建设案例手游推广代理平台有哪些
  • 广州网站建设公司招聘数据指数
  • 做外贸需要什么样的网站观看b站的广告网站平台
  • 苏州正规做网站公司注册公司网站
  • 包装设计网站免费环球资源网站网址
  • 北京 网站建设600什么是网络营销工具
  • 苹果风格网站站长统计幸福宝下载
  • wordpress 100万数据库seo网站查询
  • wordpress仿站实战教程爱站网ip反查域名
  • 做一个企业网站价格seo快速培训
  • 紫金银行网站十大app开发公司排名
  • 有没有专门做牛仔的网站武汉seo哪家好
  • 网站制作中帐号登录怎么做晋中网络推广
  • 网站关键字优化软件seo教程培训班
  • 附近网站建设服务公司站长工具seo综合查询工具
  • 深圳营销型网站建设推广服务网络营销的策略包括
  • 网站营销费用深圳seo培训
  • 招商网网站建设方案今天最新新闻报道
  • 北京 外贸网站建设seo快速排名上首页
  • 微擎做网站费用自己如何做网站
  • 企业网站备案容易吗甘肃seo网站
  • 微友说是做网站维护让帮忙投注创建自己的网站怎么弄
  • 网站建设实施方案ppt论坛推广软件