当前位置: 首页 > news >正文

怎么提高网站的知名度看广告赚钱

怎么提高网站的知名度,看广告赚钱,查看网站的收录量可以用哪个查询命令,用手机能创建网站吗线性回归与一元线性回归 V1.1线性回归问题线性方程的最优解一元线性回归一元线性回归的方程一元线性回归距离衡量方法一元线性回归的最优化求解一元线性回归的最小二乘法解法 V1.1 线性回归问题 线性回归问题就是找一条线或超平面,并使用线或超平面来描述数据分布…

线性回归与一元线性回归

    • V1.1
    • 线性回归问题
    • 线性方程的最优解
    • 一元线性回归
      • 一元线性回归的方程
      • 一元线性回归距离衡量方法
      • 一元线性回归的最优化求解
      • 一元线性回归的最小二乘法解法

V1.1

线性回归问题

线性回归问题就是找一条线超平面,并使用线超平面来描述数据分布,即特征向量和特征标签的对应关系(线超平面中也包含了特征标签的维度)。
线或超平面中既有特征向量的维度( x 1 , . . . , x n x_1,...,x_n x1,...,xn),也有特征标签的维度( y y y)。例如,特征向量只有一个维度,则模型可视化后有两个维度,及特征向量( x x x)和特征标签( y y y)的维度,用坐标系表示就是二维坐标系中的一条直线。
输入是一维或多维特征向量输出是线性式(对应到使用线和超平面计算结果)计算的结果
线性回归模型使用线性式描述,线性式的形式如下:
y = w 0 + w 1 ∗ x 1 + w 2 ∗ x 2 + . . . + w n ∗ x n y=w_0+w_1*x_1+w_2*x_2+...+w_n*x_n y=w0+w1x1+w2x2+...+wnxn
模型的使用方法,使用数据训练得到模型后,输入待预测的特征向量,就会根据线性模型计算预测值。因为是用模型计算的,因此预测值会落在模型线性方程上。

线性方程的最优解

那么怎样找到线性方程的最优解呢?我们需要衡量每1个特征向量的预测值真实值的距离,即距离衡量
并且需要一种投票机制来衡量,根据每个特征向量的距离,计算正在研究的线性模型的总体损失,以得出模型的优劣程度。

一元线性回归

一元线性回归,一元指输入特征向量是一个维度,一元线性回归的输出也是一个维度。

一元线性回归的方程

一元线性回归模型使用如下方程描述
y = k x + b y=kx+b y=kx+b

一元线性回归距离衡量方法

衡量一个模型总体的优劣程度要用到损失函数。计算预测值与真实值的差值的平方,并将其加和即可得到整体目前所测试的模型的总体损失。
一元线性回归的损失函数使用公式表述为:
∑ i = 1 m ( y i − y i ^ ) 2 \sum_{i=1}^m(y_i-\hat{y_i})^2 i=1m(yiyi^)2
其中 y i y_i yi是特征向量的标签值,即真实值 y i ^ \hat{y_i} yi^是正在研究的模型的对应特征向量的预测值

一元线性回归的最优化求解

通过最小化损失函数,我们可以将一元线性回归问题,转化为最优化问题,并使用最优化问题的解法求解。
在研究的模型的总体损失值越小越好,越小的损失值,对应的模型更能准确的反应数据(即特征向量)的特征,其对应更优的参数。
在一元线性回归模型中,待求的参数是模型公式中的 k k k b b b
arg min ⁡ k , b ∑ i = 1 m ( y i − y i ^ ) 2 \argmin_{k,b}\sum_{i=1}^m(y_i-\hat{y_i})^2 k,bargmini=1m(yiyi^)2
y i ^ = k ∗ x i + b \hat{y_i}=k*{x_i}+b yi^=kxi+b带入,得到
arg min ⁡ k , b ∑ i = 1 m ( y i − k ∗ x i − b ) 2 \argmin_{k,b}\sum_{i=1}^m(y_i-k*{x_i}-b)^2 k,bargmini=1m(yikxib)2

最小化损失是找到最优的两个参数, k k k b b b 使得模型的总体损失最小。

一元线性回归的最小二乘法解法

已经有数学的方法来计算一元线性回归的最优解,即最小二乘法,此外还有梯度下降的方法来求解。最小二乘法是一种数学方法,能够直接给出准确的解,而梯度下降的方法是搜索的方法。
最小二乘法公式如下,直接套用即可,输入训练数据,计算训练数据的平均值,即可得到最有参数 k k k b b b
k = ∑ i = 1 m ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 m ( x i − x ˉ ) 2 k=\frac{\sum_{i=1}^m(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^{m}(x_i-\bar{x})^2} k=i=1m(xixˉ)2i=1m(xixˉ)(yiyˉ)
b = y ˉ − k ∗ x ˉ b=\bar{y}-k*\bar{x} b=yˉkxˉ

http://www.shuangfujiaoyu.com/news/62530.html

相关文章:

  • 我想自己做网站吗seo关键词工具
  • 读书郎营销网站亚洲精华国产精华液的护肤功效
  • 怎么做百度网盘链接网站网站搭建
  • 没钱可以注册一千万的公司吗长沙网站优化效果
  • 重庆网站制作企业b站视频推广网站400
  • 网站建建设公司和网络自建aso如何优化
  • 南山网站建设网站推广seo优化
  • 做外贸的网站域名怎么买安徽网站推广公司
  • 网站建设优化公司佛山seo整站优化
  • 网站要什么软件做上海优质网站seo有哪些
  • 上海网站建设公司哪家好新闻投稿平台
  • 免费做公益网站网页设计制作网站
  • 在织梦网站做静态网页seo怎么快速提高排名
  • 甘肃城乡建设局网站公司网站优化
  • 承德网站制作的流程网络营销课程有哪些
  • 建党100周年网页设计素材优化设计答案
  • 宣传网站建设方案天津seo推广服务
  • 常用个人网站网站seo方案模板
  • 画廊网站模板 frontpage网络营销经典案例
  • 做相亲网站赚钱吗重庆seo推广公司
  • 怎么利用网站做产品推广网络营销学什么内容
  • 泰州 做网站专业网络推广外包
  • 猎头做mapping网站网站制作公司怎么找
  • 3.建设营销型网站流程.品牌营销理论
  • 马尔康网站建设设计培训学院
  • 济南网站开发公司星巴克网络营销案例分析
  • 佛山专业网站建设价格b站推广链接
  • 个人备案转企业网站期间app制作
  • 学了lamp做网站就足够了吗宁波seo优化公司
  • 免费做电子书的网站如何设置友情链接