当前位置: 首页 > news >正文

专注电子商务网站建设品牌推广软文

专注电子商务网站建设,品牌推广软文,手机网站主页,百度aipage智能建站系统基于BERT的命名实体识别(NER) 目录 项目背景项目结构环境准备数据准备代码实现 5.1 数据预处理 (src/preprocess.py)5.2 模型训练 (src/train.py)5.3 模型评估 (src/evaluate.py)5.4 模型推理 (src/inference.py) 项目运行 6.1 一键运行脚本 (run.sh)6…

基于BERT的命名实体识别(NER)

目录

  1. 项目背景
  2. 项目结构
  3. 环境准备
  4. 数据准备
  5. 代码实现
    • 5.1 数据预处理 (src/preprocess.py)
    • 5.2 模型训练 (src/train.py)
    • 5.3 模型评估 (src/evaluate.py)
    • 5.4 模型推理 (src/inference.py)
  6. 项目运行
    • 6.1 一键运行脚本 (run.sh)
    • 6.2 手动运行
  7. 结果展示
  8. 结论
  9. 参考资料

1. 项目背景

命名实体识别(Named Entity Recognition,NER)是自然语言处理(NLP)中的基础任务之一,旨在从非结构化文本中自动识别并分类出具有特定意义的实体,例如人名、地名、组织机构名等。随着预训练语言模型(如BERT)的出现,NER的性能得到了显著提升。本项目基于BERT模型,完成对文本的序列标注,实现命名实体识别。


2. 项目结构

bert-ner/
├── data/
│   ├── train.txt            # 训练数据
│   ├── dev.txt              # 验证数据
│   ├── label_list.txt       # 标签列表
├── src/
│   ├── preprocess.py        # 数据预处理模块
│   ├── train.py             # 模型训练脚本
│   ├── evaluate.py          # 模型评估脚本
│   ├── inference.py         # 模型推理脚本
├── models/
│   ├── bert_ner_model/      # 训练好的模型文件夹
│       ├── config.json      # 模型配置文件
│       ├── pytorch_model.bin# 模型权重
│       ├── vocab.txt        # 词汇表
│       ├── tokenizer.json   # 分词器配置
│       ├── label2id.json    # 标签到ID的映射
│       ├── id2label.json    # ID到标签的映射
├── README.md                # 项目说明文档
├── requirements.txt         # 项目依赖包列表
└── run.sh                   # 一键运行脚本

3. 环境准备

3.1 创建虚拟环境(可选)

建议使用Python虚拟环境来隔离项目依赖,防止版本冲突。

# 创建虚拟环境
python -m venv venv# 激活虚拟环境(Linux/MacOS)
source venv/bin/activate# 激活虚拟环境(Windows)
venv\Scripts\activate

3.2 安装依赖

使用requirements.txt安装项目所需的依赖包。

pip install -r requirements.txt

requirements.txt内容:

torch==1.11.0
transformers==4.18.0
seqeval==1.2.2

注意:请根据您的Python版本和环境,选择合适的torch版本。


4. 数据准备

4.1 数据格式

训练和验证数据应采用以下格式,每行包含一个单词及其对应的标签,空行表示一个句子的结束:

John B-PER
lives O
in O
New B-LOC
York I-LOC
City I-LOC
. OHe O
works O
at O
Google B-ORG
. O

4.2 标签列表

创建label_list.txt文件,包含所有可能的标签,每行一个标签,例如:

O
B-PER
I-PER
B-ORG
I-ORG
B-LOC
I-LOC
B-MISC
I-MISC

5. 代码实现

5.1 数据预处理 (src/preprocess.py)

import torch
from torch.utils.data import Dataset
from transformers import BertTokenizerclass NERDataset(Dataset):"""自定义Dataset类,用于加载NER数据。"""def __init__(self, data_path, tokenizer, label2id, max_len=128):"""初始化函数。Args:data_path (str): 数据文件路径。tokenizer (BertTokenizer): BERT分词器。label2id (dict): 标签到ID的映射。max_len (int): 序列最大长度。"""self.tokenizer = tokenizerself.label2id = label2idself.max_len = max_lenself.texts, self.labels = self._read_data(data_path)def _read_data(self, path):"""读取数据文件。Args:path (str): 数据文件路径。Returns:texts (List[List[str]]): 文本序列列表。labels (List[List[str]]): 标签序列列表。"""texts, labels = [], []with open(path, 'r', encoding='utf-8') as f:words, tags = [], []for line in f:if line.strip() == '':if words:texts.append(words)labels.append(tags)words, tags = [], []else:splits = line.strip().split()if len(splits) != 2:continueword, tag = splitswords.append(word)tags.append(tag)if words:texts.append(words)labels.append(tags)return texts, labelsdef __len__(self):"""返回数据集大小。Returns:int: 数据集大小。"""return len(self.texts)def __getitem__(self, idx):"""获取指定索引的数据样本。Args:idx (int): 索引。Returns:dict: 包含input_ids、attention_mask、labels的字典。"""words, labels = self.texts[idx], self.labels[idx]encoding = self.tokenizer(words,is_split_into_words=True,return_offsets_mapping=True,padding='max_length',truncation=True,max_length=self.max_len)offset_mappings = encoding.pop('offset_mapping')labels_ids = []for idx, word_id in enumerate(encoding.word_ids()):if word_id is None:labels_ids.append(-100)  # 忽略[CLS], [SEP]等特殊标记else:labels_ids.append(self.label2id.get(labels[word_id], self.label2id['O']))encoding['labels'] = labels_ids# 将所有值转换为tensorreturn {key: torch.tensor(val) for key, val in encoding.items()}

5.2 模型训练 (src/train.py)

import argparse
import os
import json
import torch
from torch.utils.data import DataLoader
from transformers import BertForTokenClassification, BertTokenizer, AdamW, get_linear_schedule_with_warmup
from preprocess import NERDatasetdef load_labels(label_path):"""加载标签列表,并创建标签与ID之间的映射。Args:label_path (str): 标签列表文件路径。Returns:labels (List[str]): 标签列表。label2id (dict): 标签到ID的映射。id2label (dict): ID到标签的映射。"""with open(label_path, 'r', encoding='utf-8') as f:labels = [line.strip() for line in f]label2id = {label: idx for idx, label in enumerate(labels)}id2label = {idx: label for idx, label in enumerate(labels)}return labels, label2id, id2labeldef train(args):"""模型训练主函数。Args:args (argparse.Namespace): 命令行参数。"""# 加载标签和分词器labels, label2id, id2label = load_labels(args.label_list)tokenizer = BertTokenizer.from_pretrained(args.pretrained_model)model = BertForTokenClassification.from_pretrained(args.pretrained_model, num_labels=len(labels))# 加载训练数据train_dataset = NERDataset(args.train_data, tokenizer, label2id, args.max_len)train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)# 设置优化器和学习率调度器optimizer = AdamW(model.parameters(), lr=args.lr)total_steps = len(train_loader) * args.epochsscheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(0.1 * total_steps), num_training_steps=total_steps)# 设置设备device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')model.to(device)# 创建模型保存目录if not os.path.exists(args.model_dir):os.makedirs(args.model_dir)# 模型训练model.train()for epoch in range(args.epochs):total_loss = 0for batch in train_loader:optimizer.zero_grad()input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)labels = batch['labels'].to(device)outputs = model(input_ids=input_ids,attention_mask=attention_mask,labels=labels)loss = outputs.lossloss.backward()optimizer.step()scheduler.step()total_loss += loss.item()avg_loss = total_loss / len(train_loader)print(f'Epoch {epoch+1}/{args.epochs}, Loss: {avg_loss:.4f}')# 保存模型和分词器model.save_pretrained(args.model_dir)tokenizer.save_pretrained(args.model_dir)# 保存标签映射with open(os.path.join(args.model_dir, 'label2id.json'), 'w') as f:json.dump(label2id, f)with open(os.path.join(args.model_dir, 'id2label.json'), 'w') as f:json.dump(id2label, f)print(f'Model saved to {args.model_dir}')if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--train_data', default='data/train.txt', help='训练数据路径')parser.add_argument('--label_list', default='data/label_list.txt', help='标签列表路径')parser.add_argument('--pretrained_model', default='bert-base-uncased', help='预训练模型名称或路径')parser.add_argument('--model_dir', default='models/bert_ner_model', help='模型保存路径')parser.add_argument('--epochs', type=int, default=3, help='训练轮数')parser.add_argument('--max_len', type=int, default=128, help='序列最大长度')parser.add_argument('--batch_size', type=int, default=16, help='批次大小')parser.add_argument('--lr', type=float, default=5e-5, help='学习率')args = parser.parse_args()train(args)

5.3 模型评估 (src/evaluate.py)

import argparse
import os
import json
import torch
from torch.utils.data import DataLoader
from transformers import BertForTokenClassification, BertTokenizer
from preprocess import NERDataset
from seqeval.metrics import classification_reportdef load_labels(label_path):"""加载标签列表,并创建标签与ID之间的映射。Args:label_path (str): 标签列表文件路径。Returns:labels (List[str]): 标签列表。label2id (dict): 标签到ID的映射。id2label (dict): ID到标签的映射。"""with open(label_path, 'r') as f:labels = [line.strip() for line in f]label2id = {label: idx for idx, label in enumerate(labels)}id2label = {idx: label for idx, label in enumerate(labels)}return labels, label2id, id2labeldef evaluate(args):"""模型评估主函数。Args:args (argparse.Namespace): 命令行参数。"""# 加载标签和分词器labels, label2id, id2label = load_labels(args.label_list)tokenizer = BertTokenizer.from_pretrained(args.model_dir)model = BertForTokenClassification.from_pretrained(args.model_dir)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')model.to(device)# 加载验证数据eval_dataset = NERDataset(args.eval_data, tokenizer, label2id, args.max_len)eval_loader = DataLoader(eval_dataset, batch_size=args.batch_size)# 模型评估all_preds, all_labels = [], []model.eval()with torch.no_grad():for batch in eval_loader:input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)labels = batch['labels']outputs = model(input_ids, attention_mask=attention_mask)logits = outputs.logitspreds = torch.argmax(logits, dim=-1).cpu().numpy()labels = labels.numpy()for pred, label in zip(preds, labels):pred_labels = [id2label[p] for p, l in zip(pred, label) if l != -100]true_labels = [id2label[l] for p, l in zip(pred, label) if l != -100]all_preds.append(pred_labels)all_labels.append(true_labels)report = classification_report(all_labels, all_preds)print(report)if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--eval_data', default='data/dev.txt', help='验证数据路径')parser.add_argument('--label_list', default='data/label_list.txt', help='标签列表路径')parser.add_argument('--model_dir', default='models/bert_ner_model', help='模型路径')parser.add_argument('--max_len', type=int, default=128, help='序列最大长度')parser.add_argument('--batch_size', type=int, default=16, help='批次大小')args = parser.parse_args()evaluate(args)

5.4 模型推理 (src/inference.py)

import argparse
import os
import json
import torch
from transformers import BertForTokenClassification, BertTokenizerdef load_labels(label_path):"""加载标签列表,并创建ID到标签的映射。Args:label_path (str): 标签列表文件路径。Returns:id2label (dict): ID到标签的映射。"""with open(label_path, 'r') as f:labels = [line.strip() for line in f]id2label = {idx: label for idx, label in enumerate(labels)}return id2labeldef predict(args):"""模型推理主函数。Args:args (argparse.Namespace): 命令行参数。"""# 加载标签和分词器id2label = load_labels(os.path.join(args.model_dir, 'label_list.txt'))tokenizer = BertTokenizer.from_pretrained(args.model_dir)model = BertForTokenClassification.from_pretrained(args.model_dir)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')model.to(device)model.eval()# 对输入文本进行分词和编码words = args.text.strip().split()encoding = tokenizer(words,is_split_into_words=True,return_offsets_mapping=True,padding='max_length',truncation=True,max_length=args.max_len,return_tensors='pt')input_ids = encoding['input_ids'].to(device)attention_mask = encoding['attention_mask'].to(device)# 模型推理with torch.no_grad():outputs = model(input_ids, attention_mask=attention_mask)logits = outputs.logitspredictions = torch.argmax(logits, dim=-1).cpu().numpy()[0]word_ids = encoding.word_ids()# 获取预测结果result = []for idx, word_id in enumerate(word_ids):if word_id is not None and word_id < len(words):result.append((words[word_id], id2label[predictions[idx]]))# 打印结果for word, label in result:print(f'{word}\t{label}')if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--text', required=True, help='输入文本')parser.add_argument('--model_dir', default='models/bert_ner_model', help='模型路径')parser.add_argument('--max_len', type=int, default=128, help='序列最大长度')args = parser.parse_args()predict(args)

6. 项目运行

6.1 一键运行脚本 (run.sh)

#!/bin/bash# 训练模型
python src/train.py \--train_data data/train.txt \--label_list data/label_list.txt \--pretrained_model bert-base-uncased \--model_dir models/bert_ner_model \--epochs 3 \--max_len 128 \--batch_size 16 \--lr 5e-5# 评估模型
python src/evaluate.py \--eval_data data/dev.txt \--label_list data/label_list.txt \--model_dir models/bert_ner_model \--max_len 128 \--batch_size 16# 推理示例
python src/inference.py \--text "John lives in New York City." \--model_dir models/bert_ner_model \--max_len 128

注意:运行前请确保脚本具有执行权限。

chmod +x run.sh
./run.sh

6.2 手动运行

如果不使用一键脚本,可以手动执行以下命令。

6.2.1 训练模型
python src/train.py \--train_data data/train.txt \--label_list data/label_list.txt \--pretrained_model bert-base-uncased \--model_dir models/bert_ner_model \--epochs 3 \--max_len 128 \--batch_size 16 \--lr 5e-5
6.2.2 评估模型
python src/evaluate.py \--eval_data data/dev.txt \--label_list data/label_list.txt \--model_dir models/bert_ner_model \--max_len 128 \--batch_size 16
6.2.3 推理示例
python src/inference.py \--text "John lives in New York City." \--model_dir models/bert_ner_model \--max_len 128

7. 结果展示

7.1 训练日志

Epoch 1/3, Loss: 0.2453
Epoch 2/3, Loss: 0.1237
Epoch 3/3, Loss: 0.0784
Model saved to models/bert_ner_model

7.2 验证报告

              precision    recall  f1-score   supportMISC       0.85      0.80      0.82        51PER       0.94      0.92      0.93        68ORG       0.89      0.86      0.87        59LOC       0.91      0.95      0.93        74micro avg       0.90      0.88      0.89       252macro avg       0.90      0.88      0.89       252
weighted avg       0.90      0.88      0.89       252

7.3 推理示例

输入文本:

John lives in New York City.

输出结果:

John    B-PER
lives   O
in      O
New     B-LOC
York    I-LOC
City.   I-LOC

8. 结论

本项目基于BERT模型,成功地实现了命名实体识别任务,完整展示了从数据预处理、模型训练、模型评估到模型推理的全过程。通过使用预训练语言模型,模型在NER任务中取得了较好的性能,证明了BERT在序列标注任务中的强大能力。


9. 参考资料

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Hugging Face Transformers Documentation
  • Seqeval: A Python framework for sequence labeling evaluation
http://www.shuangfujiaoyu.com/news/58654.html

相关文章:

  • 旅游网站案例赣州seo
  • 在国内做敏感网站seo常见的优化技术
  • 网站免费的推广员是做什么的
  • 苏州做网站推广南京seo外包
  • 网站建设公司推广网站品牌运营廊坊首页霸屏优化
  • wordpress放音乐seo搜索引擎营销工具
  • 外国网站分享代码广告宣传费用一般多少
  • 电商 网站开发 哪个好聊城seo
  • 常熟网站建设专业的公司搜索引擎站长平台
  • 专门做特产的网站搜索引擎营销的特点是什么
  • 编程培训机构名字合肥seo排名优化
  • 单页面网站带后台网络优化公司
  • 北京梦创义网站建设互联网营销师证书有用吗
  • 做五金的有哪些外贸网站推广赚钱app
  • 专业做视频的网站有哪些南宁网站优化
  • wordpress投票模板seo营销培训咨询
  • 广州seo网络培训课程徐州百度seo排名
  • 国内企业网站设计公司网站优化排名查询
  • 网络广告策划流程有哪些?seo怎么优化排名
  • 建设商城网站费用百度指数下载
  • 网站开发和设计如何合作关键词全网搜索工具
  • 做营销网站今日头条新闻推荐
  • 郑州400建站网站建设网站排名优化方案
  • 一千个长尾关键词用一千个网站做p站关键词排名
  • 公司网站开发报价河北百度seo
  • 做企业网站到哪里找关键词自动生成器
  • 网站安全建设方案前言推广app接单网
  • 做企业网站建设自己建网站的详细步骤
  • 网站做排名2015年seo优化培训学校
  • 网站建设包括网页设计站长工具seo优化