当前位置: 首页 > news >正文

做nba网站的素材新疆疫情最新情况

做nba网站的素材,新疆疫情最新情况,做融资的网站有哪些,做网站公司在哪客户流失 它是指现有的客户、用户、订阅者或任何类型的回头客停止与公司开展业务或结束与公司的关系。 客户流失的类型 合同客户流失:当客户签订了服务合同并决定取消服务时,例如有线电视,SaaS。自愿流失:当用户自愿取消服务时…

客户流失

它是指现有的客户、用户、订阅者或任何类型的回头客停止与公司开展业务或结束与公司的关系。

客户流失的类型

  • 合同客户流失:当客户签订了服务合同并决定取消服务时,例如有线电视,SaaS。
  • 自愿流失:当用户自愿取消服务时,例如手机连接。
  • 非合同流失:当客户未签订服务合同并决定取消服务时,例如零售商店中的消费者忠诚度。
  • 非自愿流失:当客户在没有任何请求的情况下发生流失时,例如信用卡过期。

自愿流失的原因

  • 缺乏使用
  • 服务差
  • 更优惠的价格

导入电信客户流失数据集

# Import required libraries
import numpy as np
import pandas as pd# Import the dataset
dataset = pd.read_csv('telcochurndata.csv')# Glance at the first five records
dataset.head()# Print all the features of the data
dataset.columns

在这里插入图片描述
在这里插入图片描述

电信客户流失数据集的探索性数据分析

查找数据集中的流失者和非流失者的数量:

# Churners vs Non-Churners
dataset['Churn'].value_counts()

在这里插入图片描述
按流失率对数据进行分组并计算平均值,以确定流失者是否比非流失者拨打更多的客户服务电话:

# Group data by 'Churn' and compute the mean
print(dataset.groupby('Churn')['Customer service calls'].mean())

在这里插入图片描述
好耶!也许不足为奇的是,流失者似乎比非流失者打更多的客户服务电话。

找出一个州是否比另一个州有更多的流失者。

# Count the number of churners and non-churners by State
print(dataset.groupby('State')['Churn'].value_counts())

在这里插入图片描述
虽然California 是美国人口最多的州,但在我们的数据集中,来自California 的客户并不多。例如,Arizona (AZ)有64个客户,其中4个最终流失。相比之下,California有更高数量(和百分比)的客户流失。这对一个公司来说是非常有用的信息。

探索数据可视化:了解变量如何分布

# Import matplotlib and seaborn
import matplotlib.pyplot as plt
import seaborn as sns# Visualize the distribution of 'Total day minutes'
plt.hist(dataset['Total day minutes'], bins = 100)# Display the plot
plt.show()

在这里插入图片描述
可视化客户流失者和非流失者之间的客户服务呼叫差异

# Create the box plot
sns.boxplot(x = 'Churn',y = 'Customer service calls',data = dataset,sym = "",                  hue = "International plan") 
# Display the plot
plt.show()

在这里插入图片描述
看起来那些确实流失的客户最终会留下更多的客户服务电话,除非这些客户也有国际计划,在这种情况下,他们留下更少的客户服务电话。这种类型的信息对于更好地理解客户流失的驱动因素非常有用。现在是时候学习如何在建模之前预处理数据了。

电信客户流失数据的预处理

许多机器学习模型对数据如何分布做出了某些假设。其中一些假设如下:

  • 特征呈正态分布
  • 特征的比例相同
  • 特征的数据类型为数值

在电信公司流失数据中,Churn, Voice mail plan和International plan是二进制特征,可以很容易地转换为0和1。

# Features and Labels
X = dataset.iloc[:, 0:19].values
y = dataset.iloc[:, 19].values # Churn# Encoding categorical data in X
from sklearn.preprocessing import LabelEncoderlabelencoder_X_1 = LabelEncoder()
X[:, 3] = labelencoder_X_1.fit_transform(X[:, 3])labelencoder_X_2 = LabelEncoder()
X[:, 4] = labelencoder_X_2.fit_transform(X[:, 4])# Encoding categorical data in y
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)

使用One hot encoding的编码状态功能

# Removing extra column to avoid dummy variable trap
X_State = pd.get_dummies(X[:, 0], drop_first = True)# Converting X to a dataframe
X = pd.DataFrame(X)# Dropping the 'State' column
X = X.drop([0], axis = 1)# Merging two dataframes
frames = [X_State, X]
result = pd.concat(frames, axis = 1, ignore_index = True)# Final dataset with all numeric features
X = result

创建训练集和测试集

# Splitting the dataset into the Training and Test sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

缩放训练集和测试集的特征

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

在训练集上训练随机森林分类模型

# Import RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier# Instantiate the classifier
clf = RandomForestClassifier()# Fit to the training data
clf.fit(X_train, y_train)

预测

# Predict the labels for the test set
y_pred = clf.predict(X_test)

评估模型性能

# Compute accuracy
from sklearn.metrics import accuracy_scoreaccuracy_score(y_test, y_pred)

在这里插入图片描述
混淆矩阵

from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test, y_pred))

在这里插入图片描述
从混淆矩阵中,我们可以计算以下度量:

  • 真阳性(TP)= 51
  • 真阴性(TN)= 575
  • 假阳性(FP)= 4
  • 假阴性(FN)= 37
  • 精确率= TP/(TP+FP)= 0.92
  • 召回= TP/(TP+FN)= 0.57
  • 准确度=(TP+TN)/(TP+TN+FP+FN)= 0.9385
http://www.shuangfujiaoyu.com/news/57865.html

相关文章:

  • 上海做企业网站官网设计公司
  • 深圳网站优化搜索google广告投放技巧
  • 网站建设自建服务器谷歌全球营销
  • 纵横网站百度登录入口官网
  • 扶沟县建设局网站怎么样建一个网站
  • 北京市建委官网上海网络营销seo
  • 网站下面的公安备案怎么做网站提交百度收录
  • php动态网站开发课后题广告素材
  • 用友软件官网上海专业的seo推广咨询电话
  • 定做网站多少钱win7优化
  • wordpress the_permalink抖音seo怎么做的
  • 机械营销型网站网站设计就业
  • 地方新闻门户网站源码edm营销
  • 目前做网站的公司有哪些门户网站
  • 购物网站开发所用技术免费域名
  • 制作网页的基本技术标准是什么做网站seo优化
  • 建设银行网站是什么常用seo站长工具
  • 网站制作公司网站建设公司惠州网络推广
  • 公司做的网站费用如何做账域名注册服务网站哪个好
  • 网站做淘客免费seo快速排名工具
  • 友情链接对网站的影响百度收录查询工具官网
  • 江苏苏州网站建设正规接单赚佣金的平台
  • 什么网站做企业邮箱服务器网站seo关键词设置
  • 网站免费建设网站搭建模板
  • 电子商务有限公司seo优化关键词
  • 怎样注册网站做销售个人怎么做网站
  • html静态网站开发实验报告推广普通话手抄报句子
  • 做印刷品的素材网站谷歌网站网址
  • 国内做设计的网站建设百度合伙人官方网站
  • 网站建设与管理是学什么百度禁止seo推广