当前位置: 首页 > news >正文

昆明网站建设方案优化seo公司怎么推广宣传

昆明网站建设方案优化,seo公司怎么推广宣传,自己制作手机游戏app,wordpress火车头添加媒体最优化基础知识(2) 无约束优化问题,一维搜索 一、一维搜索 一维搜索的意思是在一个方向上找到最小点。 用数学语言描述,X*Xk tPk,从Xk沿着Pk方向行走t到达最小点X*。 1、收敛速度: 线性收敛&#xff1…

最优化基础知识(2)

无约束优化问题,一维搜索

一、一维搜索

一维搜索的意思是在一个方向上找到最小点。

用数学语言描述,X*=Xk +tPk,从Xk沿着Pk方向行走t到达最小点X*

1、收敛速度:

请添加图片描述

  1. 线性收敛:p=1,0<beta<1
  2. 超线性收敛: p>1或者beta=0
  3. 次线性收敛:p=1,beta=1
  4. p阶收敛:p>1
2、二次终止性:

能够在有限步内找到具有正定矩阵的二次函数的极小点。

f (X) = 1/2 XTAX + bTX + c

3、终止准则

什么时候停机,什么时候停止搜索。通常有以下五种:

请添加图片描述

1、黄金分割法

给定每次迭代区间缩小比例,如果做才能搜索次数最少?

黄金分割法的python代码:

import mathdef golden_section_search(f, a, b, tol=1e-6):golden_ratio = (math.sqrt(5) - 1) / 2length = b - ax1 = a + (1 - golden_ratio) * lengthx2 = a + golden_ratio * lengthwhile x2-x1>tol:print(x1,x2)if f(x1) < f(x2):b = x2x2 = x1x1 = a + (1 - golden_ratio) * (b - a)else:a = x1x1 = x2x2 = a + golden_ratio * (b - a)return (a + b) / 2# 示例用法
def f(x):# 定义函数 f(x)return x*math.log(x)# 在区间 [0, 5] 中寻找函数的极小值点
result = golden_section_search(f, 0, 5)
print(f"极小值点的位置为: {result}")
print(f"函数极小值为: {f(result)}")

2、fibonacci搜索

给定迭代次数,如何在迭代次数内达到最好的搜索效果(最后一次迭代完成,搜索区间最小)?

这个问题可以反过来理解,假设最后一次迭代完成,搜索区间长度为1,那么最开始的搜索区间最大为多少?

python代码:

import mathdef fibonacci_search(f, a, b, n):# 计算Fibonacci数列fibonacci = [0, 1]for i in range(n):fibonacci.append(fibonacci[-1] + fibonacci[-2])# 计算初始区间长度length = b - a# 计算初始比例ratio = (fibonacci[-3] / fibonacci[-1]) if len(fibonacci) > 2 else 0# 初始化区间端点x1 = a + ratio * lengthx2 = a + (1 - ratio) * length# 迭代搜索for _ in range(len(fibonacci) - 3):if f(x1) < f(x2):b = x2x2 = x1x1 = a + ratio * (b - a)else:a = x1x1 = x2x2 = a + (1 - ratio) * (b - a)fibonacci.pop()ratio = (fibonacci[-3] / fibonacci[-1])print(fibonacci[-3],fibonacci[-1],ration)# 返回最优解的位置return (a + b) / 2# 示例用法
def f(x):# 定义函数 f(x)return x*math.log(x)# 在区间 [-5, 5] 中寻找函数的极小值点
result = fibonacci_search(f, 0, 5, 30)
print(f"极小值点的位置为: {result}")
print(f"函数极小值为: {f(result)}")

在有的地方,直接给出的不是迭代次数,而是最终的区间长度的上界L,b1-a1是初始区间。
b n − a n = F n − 1 / F n ( b n − 1 − a n − 1 ) = F n − 1 F n F n − 2 F n − 1 ⋯ F 1 F 2 ( b 1 − a 1 ) b_n-a_n=F_{n-1}/F_{n}(b_{n-1}-a_{n-1}) = \frac{F_{n-1}}{F_{n}}\frac{F_{n-2}}{F_{n-1}}\cdots\frac{F_{1}}{F_{2}}(b_1-a_1) bnan=Fn1/Fn(bn1an1)=FnFn1Fn1Fn2F2F1(b1a1)
也就是说区间长度最小bn-an=(b1-a1)/F_n<=L,F_n是最大的fibonacci数。

关键:F[n-2]+F[n-1]=F[n],F[n-2]/F[n]+F[n-1]/F[n]=1,这样能保证每次删掉一侧的区间,比例是一样的。

当F[6]/F[7]=21/34=0.6176470588235294,和黄金分割法近似相同。

黄金分割法是fibonacci法的极限形式。

3、三点二次插值法

请添加图片描述

4、两点三次插值法

请添加图片描述

5、牛顿法

牛顿法就是在极小点附近选择一个初始点x0,在x0处二阶泰勒展开,并求其驻点。牛顿法不具有全局收敛性,因此初始点的选择很重要,它只是向初始点附近的驻点靠近。

请添加图片描述

牛顿法的python代码:

import sympy as sp
def newton_method(f, x0, tol=1e-6, max_iter=100):f_d1 = f.diff()f_d2 = f_d1.diff()# 迭代搜索for _ in range(max_iter):# 计算导数值fx = f_d1.subs({x:x0})fxx = f_d2.subs({x:x0})# 更新搜索位置x1 = x0 - fx / fxx# 检查是否满足终止条件if abs(x1 - x0) < tol:break# 更新当前点x0 = x1# 返回搜索结果return x1# 示例用法
x = sp.Symbol('x')
f=x**3-4*x+5# 选择初始点
x0 = -10# 使用牛顿法搜索函数的极小值点
result = newton_method(f, x0)
print(f"极小值点的位置为: {result.n()}")
print(f"函数极小值为: {f.subs({x:result}).n()}")

二、非精确一维搜索

1、Goldstein准则

请添加图片描述

2、Wolfe准则

请添加图片描述

3、Armijo准则

请添加图片描述

http://www.shuangfujiaoyu.com/news/57061.html

相关文章:

  • 嘉兴制作手机网站搜索网络如何制造
  • wordpress短信通知下载优化大师安装桌面
  • python做简单的网站百度推广官方电话
  • 青岛做公司网站sem是什么设备
  • 妇科网站源码模板建站价格
  • 公司建设网站需要固定ip吗淘宝关键词搜索排名
  • 女性门户网站源码两性网站模版女性门户网站整站源码带数据带采集漳州seo网站快速排名
  • 建一个网站买完域名后应该怎么做免费的域名和网站
  • 平台网站如何优化淘宝seo 优化软件
  • 免费做网站靠谱么网站推广常用的方法
  • 杭州住房和城乡建设委员会网站关键词百度网盘
  • 网站改版怎么做301今日热点新闻一览
  • 衡阳做网站优化广州seo网站推广
  • 企业备案做电影网站的后果球队积分排名
  • 公司没有自己的网站搜索引擎的优化方法
  • 网站百度排名怎么做快百度搜索引擎优化案例
  • 电商网站设计是什么站长资源平台
  • 百度广告一天多少钱seo是什么意思 职业
  • cpa之家 app推广平台seo排名优化价格
  • 邢台网站建设公司产品推广软文300字
  • 手机在线做ppt模板下载网站有哪些发稿软文公司
  • 做日租房 网站商家怎么入驻百度
  • 做招商加盟网站怎么样宁波seo网络推广产品服务
  • 沛县专业做网站数据统计网站有哪些
  • 昌黎县城乡建设局网站整合网络营销
  • 微网站开发需求文档网络营销推广案例
  • 网站制作哪里做得好百度收录批量提交入口
  • 昆明岭蓝网站建设公司建设企业营销型网站
  • 网站建设模板是什么营销推广活动策划方案
  • 网站颜色设计seo网站优化方