1个人做多网站负责人品牌策划方案模板
之——泛化性提升
杂谈
深度学习的数据增强(Data Augmentation)是一种技术,用于通过对原始数据进行多样性的变换和扩充,以增加训练数据的多样性,提高模型的泛化能力。这有助于减轻过拟合问题,提高深度学习模型的性能。以下是深度学习数据增强的一些方法以及一些成功的案例:
数据增强方法:
图像数据增强:
- 镜像翻转:对图像进行水平或垂直翻转,增加图像的多样性。
- 旋转:以不同的角度旋转图像。
- 平移:平移图像的位置,以模拟不同拍摄角度。
- 放缩:对图像进行缩小或放大。
- 亮度、对比度、色彩调整:改变图像的亮度、对比度或颜色。
文本数据增强:
- 同义词替换:将一些词替换为其同义词,以增加文本的多样性。
- 词序变换:随机改变文本中词语的顺序。
- 插入、删除、替换字符:对文本进行字符级别的操作,以增加噪音和多样性。
声音数据增强:
- 增加噪声:向声音数据中添加噪声,以增加多样性。
- 时间伸缩:对声音数据进行时间尺度的变化。
- 频域变换:在声音数据的频域上进行操作。
成功案例:
图像分类:
- ImageNet竞赛:在ImageNet图像分类竞赛中,数据增强被广泛使用。训练集中的图像进行了多种变换,包括翻转、旋转、缩放等。这些技术帮助了深度卷积神经网络(CNN)在图像分类任务上取得巨大成功。
目标检测:
- Faster R-CNN:Faster R-CNN是一种流行的目标检测算法,使用了数据增强来改进检测性能。通过对训练图像进行多样性的变换,模型在不同环境下能更好地识别目标。
自然语言处理:
- BERT:BERT是一种预训练的语言模型,通过对文本进行多种数据增强操作,如遮蔽、替换、乱序等,来学习文本的上下文信息。BERT的成功影响了自然语言处理领域的各种任务,如情感分析、问答等。
语音识别:
- SpecAugment:SpecAugment是一种用于语音识别的数据增强方法,通过在声谱图上进行时间和频域的变换来改进语音识别模型的性能。
这些案例表明,数据增强是深度学习中的一种重要技术,可以显著提高模型的性能和泛化能力。不同领域的数据增强方法可能有所不同,但它们都通过增加数据多样性来帮助模型更好地理解和泛化数据。
正文
1.数据增广
数据增广,顾名思义就是在现有数据基础上去做增强、扩充、调整。
理想情况下训练出来的model在实际部署上完全不一样。
所以希望在训练时候就能够考虑尽可能多的干扰与数据变化情况,以免出现泛化性能差的现象:
一般来说是随机在线生成的,可以理解为随机正则项:
2.方法
2.1 翻转
数据增广要考虑到本身的应用场景,要是一些完全不可能上下颠倒的物体,翻转增广是没有意义的。
2.2 切割
随机方式切割图片并变回固定形状:
2.3 颜色
色调、饱和度、亮度:
2.4 其他数字图像处理
旋转跳跃、瑞锐化、虚化、消除、噪声:
3.实现
导包导图:
import torch
import torchvision
from torch import nn
from d2l import torch as d2l# d2l.set_figsize()
d2l.set_figsize()
img = d2l.Image.open(r'D:\apycharmblackhorse\project\_04_pytorch\basic_class\data/pikaqiu.jpg')
d2l.plt.imshow(img);
列举函数:
#一个列举函数,传入图片和方法
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):Y = [aug(img) for _ in range(num_rows * num_cols)]d2l.show_images(Y, num_rows, num_cols, scale=scale)
随机水平翻转随机垂直翻转:
print("随机水平翻转")
apply(img, torchvision.transforms.RandomHorizontalFlip())print("随机垂直翻转")
apply(img, torchvision.transforms.RandomVerticalFlip())
随机裁剪:
print("随机裁剪") #裁剪图像大小,与原始图像比例随机范围,高宽比随机范围
cut_aug=torchvision.transforms.RandomResizedCrop(200,(0.1,1),(0.5,2))
apply(img, cut_aug)
颜色变化:
print("颜色变化") #亮度、对比度、饱和度和色调,上下幅值
color_aug=torchvision.transforms.ColorJitter(brightness=0.5,contrast=0.5,saturation=0.5,hue=0.5)
apply(img, color_aug)
多种增广方法合并:
print("多种增广方法")
augs=torchvision.transforms.Compose([torchvision.transforms.RandomVerticalFlip(),cut_aug,color_aug])
apply(img, augs)
训练应用:主要是跑不动,之后回过头来再整理:
%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2lall_images = torchvision.datasets.CIFAR10(train=True, root="../data",download=True)
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8);train_augs = torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor()])test_augs = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])def load_cifar10(is_train, augs, batch_size):dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,transform=augs, download=True)dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,shuffle=is_train, num_workers=d2l.get_dataloader_workers())return dataloaderdef train_batch_ch13(net, X, y, loss, trainer, devices):"""用多GPU进行小批量训练"""if isinstance(X, list):# 微调BERT中所需X = [x.to(devices[0]) for x in X]else:X = X.to(devices[0])y = y.to(devices[0])net.train()trainer.zero_grad()pred = net(X)l = loss(pred, y)l.sum().backward()trainer.step()train_loss_sum = l.sum()train_acc_sum = d2l.accuracy(pred, y)return train_loss_sum, train_acc_sumdef train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,devices=d2l.try_all_gpus()):"""用多GPU进行模型训练"""timer, num_batches = d2l.Timer(), len(train_iter)animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],legend=['train loss', 'train acc', 'test acc'])net = nn.DataParallel(net, device_ids=devices).to(devices[0])for epoch in range(num_epochs):# 4个维度:储存训练损失,训练准确度,实例数,特点数metric = d2l.Accumulator(4)for i, (features, labels) in enumerate(train_iter):timer.start()l, acc = train_batch_ch13(net, features, labels, loss, trainer, devices)metric.add(l, acc, labels.shape[0], labels.numel())timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3],None))test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))print(f'loss {metric[0] / metric[2]:.3f}, train acc 'f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on 'f'{str(devices)}')batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10, 3)def init_weights(m):if type(m) in [nn.Linear, nn.Conv2d]:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)def train_with_data_aug(train_augs, test_augs, net, lr=0.001):train_iter = load_cifar10(True, train_augs, batch_size)test_iter = load_cifar10(False, test_augs, batch_size)loss = nn.CrossEntropyLoss(reduction="none")trainer = torch.optim.Adam(net.parameters(), lr=lr)train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)train_with_data_aug(train_augs, test_augs, net)
结果:
小结
-
图像增广基于现有的训练数据生成随机图像,来提高模型的泛化能力。
-
为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,而在预测过程中不使用带随机操作的图像增广。
-
深度学习框架提供了许多不同的图像增广方法,这些方法可以被同时应用。