当前位置: 首页 > news >正文

深圳做分销网站建设深圳网站优化

深圳做分销网站建设,深圳网站优化,二级域名怎么做网站,网站建设有关模板文章目录 3.2、softmax 回归3.2.1、softmax运算3.2.2、交叉熵损失函数3.2.3、PyTorch 从零实现 softmax 回归3.2.4、简单实现 softmax 回归 3.2、softmax 回归 3.2.1、softmax运算 softmax 函数是一种常用的激活函数,用于将实数向量转换为概率分布向量。它在多类别…

文章目录

    • 3.2、softmax 回归
      • 3.2.1、softmax运算
      • 3.2.2、交叉熵损失函数
      • 3.2.3、PyTorch 从零实现 softmax 回归
      • 3.2.4、简单实现 softmax 回归

在这里插入图片描述

3.2、softmax 回归

3.2.1、softmax运算

在这里插入图片描述

softmax 函数是一种常用的激活函数,用于将实数向量转换为概率分布向量。它在多类别分类问题中起到重要的作用,并与交叉熵损失函数结合使用。

y ^ = s o f t m a x ( o ) 其中     y ^ i = e x p ( o j ) ∑ k e x p ( o k ) \hat{y} = softmax(o) \ \ \ \ \ 其中\ \ \ \ \hat{y}_i = \frac{exp(o_j)}{\sum_{k}exp(o_k)} y^=softmax(o)     其中    y^i=kexp(ok)exp(oj)

其中,O为小批量的未规范化的预测, Y ^ \hat{Y} Y^w为输出概率,是一个正确的概率分布【 ∑ y i = 1 \sum{y_i} =1 yi=1

3.2.2、交叉熵损失函数

通过测量给定模型编码的比特位,来衡量两概率分布之间的差异,是分类问题中常用的 loss 函数。

H ( P , Q ) = − Σ P ( x ) ∗ l o g ( Q ( x ) ) H(P, Q) = -Σ P(x) * log(Q(x)) H(P,Q)=ΣP(x)log(Q(x))

真实概率分布是从哪里得知的?

真实标签的概率分布是由数据集中的标签信息提供的,通常使用单热编码表示。

softmax() 如何与交叉熵函数搭配的?

softmax 函数与交叉熵损失函数常用于多分类任务中。softmax 函数用于将模型输出转化为概率分布形式,交叉熵损失函数用于衡量模型输出概率分布与真实标签的差异,并通过优化算法来最小化损失函数,从而训练出更准确的分类模型。

3.2.3、PyTorch 从零实现 softmax 回归

(非完整代码)

#在 Notebook 中内嵌绘图
%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l#,将图形显示格式设置为 SVG 格式,以在 Notebook 中以矢量图形的形式显示图像。这有助于提高图像的清晰度和可缩放性。
d2l .use_svg_display()

在线下载数据集 Fashion-MNIST

#将图像数据转换为张量形式
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root="../data",train=True,transform=trans,download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data",train=False,transform =trans,download=True)len(mnist_train),len(mnist_test)

绘图(略)

读取小批量数据集

batch_size = 256def get_dataloader_workers():"""使用4进程读取"""return 4train_iter = data.DataLoader(mnist_train,batch_size,shuffle=True,num_workers=get_dataloader_workers())
timer = d2l.Timer()
for X,y in train_iter:continue
print(f'{timer.stop():.2f}sec')

定义softmax操作

def softmax(X):X_exp = torch.exp(X)partition = X_exp.sum(1, keepdim=True)return X_exp / partition  # 这里应用了广播机制

定义损失函数

def cross_entropy(y_hat, y):return - torch.log(y_hat[range(len(y_hat)), y])cross_entropy(y_hat, y)

分类精度

def accuracy(y_hat, y):  #@save"""计算预测正确的数量"""if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:y_hat = y_hat.argmax(axis=1)cmp = y_hat.type(y.dtype) == yreturn float(cmp.type(y.dtype).sum())

评估

def evaluate_accuracy(net, data_iter):  #@save"""计算在指定数据集上模型的精度"""if isinstance(net, torch.nn.Module):net.eval()  # 将模型设置为评估模式metric = Accumulator(2)  # 正确预测数、预测总数with torch.no_grad():for X, y in data_iter:metric.add(accuracy(net(X), y), y.numel())return metric[0] / metric[1]
class Accumulator:  #@save"""在n个变量上累加"""def __init__(self, n):self.data = [0.0] * ndef add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]

3.2.4、简单实现 softmax 回归

导入前面已下载数据集 Fashion-MNIST

import torch 
from torch import nn
from d2l import torch as d2lbatch_size =256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型

#nn.Flatten() 层的作用是将输入数据展平,将二维输入(如图像)转换为一维向量。因为线性层(nn.Linear)通常期望接收一维输入。
#nn.Linear(784,10) 将输入特征从 784 维降低到 10 维,用于图像分类问题中的 10 个类别的预测   784维向量->10维向量
net = nn.Sequential(nn.Flatten(),nn.Linear(784,10))def init_weights(m):if type(m) == nn.Linear:nn.init.normal_(m.weight,std=0.01)net.apply(init_weights);
#计算交叉熵损失函数,用于衡量模型预测与真实标签之间的差异。参数 reduction 控制了损失的计算方式。
#reduction='none' 表示不进行损失的降维或聚合操作,即返回每个样本的独立损失值。
loss = nn.CrossEntropyLoss(reduction='none')

优化算法

trainer = torch.optim.SGD(net.parameters(),lr=0.1)

训练

num_epochs = 10
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)
http://www.shuangfujiaoyu.com/news/56555.html

相关文章:

  • 如何做网站支付链接营销方案ppt
  • wordpress 获取页面的名称关键词优化排名费用
  • ps网站背景图片怎么做免费seo网站
  • 嘉兴做网站建设的公司哪家好seo搜狗
  • 微网站建设公司哪家好今日头条热搜
  • 网站登陆口提交网站深圳网络公司推广平台
  • wordpress记录搜索历史济南网站优化公司
  • 滕州做网站比较好的网络公司seo网上培训课程
  • 企业网站建设优势百度爱采购客服电话
  • 做医院网站公司seo运营培训
  • 自己做微信小程序商城网站信息组织优化
  • 网站建设认知与理解拼多多代运营收费标准
  • 手机端网站建设教程百度网络营销中心
  • html5自适应网站模板企业网页设计制作
  • 福州专业网站搭建排名国内十大4a广告公司
  • 搜索推广的优势惠州seo关键词推广
  • 可视化在线做网站武汉建站公司
  • aspx网站做app公司产品推广方案
  • 做夜夜做网站营销推广公司案例
  • 苏州高端网站建设定制seo网站查询
  • 如何建立一个公司网页简介seo外链工具
  • 网站好坏标准百度seo点击
  • 免费网站建设总部市场营销最有效的手段
  • 商城移动端网站开发宁波企业seo外包
  • 阜阳集团网站建设成都官网seo厂家
  • wordpress 跳转插件福州seo结算
  • 怎样制作个人网站今天最新新闻事件报道
  • 璧山集团网站建设青岛seo整站优化
  • 做化工的网站百度知道在线
  • 网页设计的详细流程关键词优化排名网站