当前位置: 首页 > news >正文

做音乐网站建设的开发平台深圳优化怎么做搜索

做音乐网站建设的开发平台,深圳优化怎么做搜索,服务器托管公司,用ps做一份网站PMPP char3 – Multidimensional grids and data ​ 五一过后,有些工作要赶,抽出时间更新一下。这一章基本都熟练掌握,在做习题过程中有一些思考。这里涉及到了一点点GEMM(矩阵乘),GEMM有太多可深挖的了&a…

PMPP char3 – Multidimensional grids and data

​ 五一过后,有些工作要赶,抽出时间更新一下。这一章基本都熟练掌握,在做习题过程中有一些思考。这里涉及到了一点点GEMM(矩阵乘),GEMM有太多可深挖的了,推荐一篇博客How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog (siboehm.com)。另外,我还发现上一篇博客,有写错的地方,这篇博客的末尾做了一下勘误。这里记录我的个人理解,有不正确的地方,欢迎留言或者私信讨论。

课后习题

  1. In this chapter we implemented a matrix multiplication kernel that has each
    thread produce one output matrix element. In this question, you will
    implement different matrix-matrix multiplication kernels and compare them.
    a. Write a kernel that has each thread produce one output matrix row. Fill in
    the execution configuration parameters for the design.
    b. Write a kernel that has each thread produce one output matrix column. Fill
    in the execution configuration parameters for the design.
    c. Analyze the pros and cons of each of the two kernel designs.

答案:

a 部分 (来自大模型)

__global__ void matrixMulRow(float *A, float *B, float *C, int m, int n, int k) {int row = blockIdx.y * blockDim.y + threadIdx.y;if (row < m) {for (int col = 0; col < k; ++col) {float sum = 0;for (int i = 0; i < n; ++i) {sum += A[row * n + i] * B[i * k + col];}C[row * k + col] = sum;}}
}
dim3 threadsPerBlock(1, 256);
dim3 blocksPerGrid(1, (m + threadsPerBlock.y - 1) / threadsPerBlock.y);
matrixMulRow<<<blocksPerGrid, threadsPerBlock>>>(A, B, C, m, n, k);

b部分 (来自大模型)

__global__ void matrixMulCol(float *A, float *B, float *C, int m, int n, int k) {int col = blockIdx.x * blockDim.x + threadIdx.x;if (col < k) {for (int row = 0; row < m; ++row) {float sum = 0;for (int i = 0; i < n; ++i) {sum += A[row * n + i] * B[i * k + col];}C[row * k + col] = sum;}}
}
dim3 threadsPerBlock(256, 1);
dim3 blocksPerGrid((k + threadsPerBlock.x - 1) / threadsPerBlock.x, 1);
matrixMulCol<<<blocksPerGrid, threadsPerBlock>>>(A, B, C, m, n, k);

c部分

假设A、B、C都是行主序;这里也不使用共享内存。一次读入一个缓存行,访问一行数据的话,存在访存局部性,需要用到的数据就在缓存中;访问一列数据的话,不存在访存局部性,需要用到的数据就不在缓存中,需要再读一个缓存行。假设一个缓存行时64B,对应16个float32。

访问A访问B访问C
一个线程处理C中的一行连续访问,只访问一行。访存次数=K/16不连续访问,一次访问一列,访存次数=K;总共要访问N列,访问次数=N*K连续访问,只访问一行。访存次数=K/16
一个线程处理C中的一列不连续访问,只访问一列。访存次数=M不连续访问,一次访问一列,访存次数=K;总共要访问N列,访问次数=N*K不连续访问,只访问一列。访存次数=M

如果访存数据量较小,也就是a那种,可以直接放到寄存器中,这样访存cycle更短。

如果访存数据量较大,reg的容量就不够用,需要一部分存到L1上面,甚至L1也装不下,要从global里读取。涉及多个存储数据一致性、data hazard的问题,效率就很低。

  1. A matrix-vector multiplication takes an input matrix B and a vector C and
    produces one output vector A. Each element of the output vector A is the dot
    product of one row of the input matrix B and C, that is, A[i] = ΣB[i][j] * C[j].
    For simplicity we will handle only square matrices whose elements are single-
    precision floating-point numbers. Write a matrix-vector multiplication kernel and
    the host stub function that can be called with four parameters: pointer to the output
    matrix, pointer to the input matrix, pointer to the input vector, and the number of
    elements in each dimension. Use one thread to calculate an output vector element.

答案:

​ 其实,这道题就是参考gemm,实现gemv。就是把输出C的一个变量(C[i])映射到一个线程上,这个线程遍历j个变量,再各自点乘+求和(也就是j维度上做规约)。

​ 以下是大模型写出来的程序,我看了下没啥问题,测试了下也是ok的。输入为A和B,输出为C。

#include <iostream>
#include <vector>
#include <random>
#include <cuda_runtime.h>#define CHECK(call) \
{ \const cudaError_t error = call; \if (error != cudaSuccess) { \std::cout << "Error: " << __FILE__ << ":" << __LINE__ << ", " << cudaGetErrorString(error) << std::endl; \exit(1); \} \
}__global__ void matrixVectorMultiply(const float* A, const float* B, float* C, int rows, int cols) {int i = blockIdx.x * blockDim.x + threadIdx.x;if (i < rows) {float sum = 0.0f;for (int j = 0; j < cols; ++j) {sum += A[j] * B[i * cols + j];}C[i] = sum;}
}int main() {int rows = 1024;int cols = 768;std::vector<float> hostA(cols);std::vector<float> hostB(rows * cols);std::vector<float> hostC(rows);std::vector<float> resultC(rows);// 初始化输入数据std::random_device rd;std::mt19937 gen(rd());std::uniform_real_distribution<float> dis(-1.0, 1.0);for (int j = 0; j < cols; ++j) {hostA[j] = dis(gen);}for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {hostB[i * cols + j] = dis(gen);}}// 分配设备内存float* deviceA;float* deviceB;float* deviceC;CHECK(cudaMalloc(&deviceA, cols * sizeof(float)));CHECK(cudaMalloc(&deviceB, rows * cols * sizeof(float)));CHECK(cudaMalloc(&deviceC, rows * sizeof(float)));// 将输入数据从主机复制到设备CHECK(cudaMemcpy(deviceA, hostA.data(), cols * sizeof(float), cudaMemcpyHostToDevice));CHECK(cudaMemcpy(deviceB, hostB.data(), rows * cols * sizeof(float), cudaMemcpyHostToDevice));// 启动内核int threadsPerBlock = 256;int blocksPerGrid = (rows + threadsPerBlock - 1) / threadsPerBlock;matrixVectorMultiply<<<blocksPerGrid, threadsPerBlock>>>(deviceA, deviceB, deviceC, rows, cols);CHECK(cudaGetLastError());// 将输出数据从设备复制到主机CHECK(cudaMemcpy(hostC.data(), deviceC, rows * sizeof(float), cudaMemcpyDeviceToHost));// 验证结果正确性for (int i = 0; i < rows; ++i) {float sum = 0.0f;for (int j = 0; j < cols; ++j) {sum += hostA[j] * hostB[i * cols + j];}resultC[i] = sum;}for (int i = 0; i < rows; ++i) {if (std::abs(hostC[i] - resultC[i]) > 1e-5) {std::cout << "Result verification failed at index " << i << std::endl;return 1;}}std::cout << "Result verification passed" << std::endl;// 释放设备内存CHECK(cudaFree(deviceA));CHECK(cudaFree(deviceB));CHECK(cudaFree(deviceC));return 0;
}
  1. Consider the following CUDA kernel and the corresponding host function that
    calls it:

a. What is the number of threads per block?
b. What is the number of threads in the grid?

c. What is the number of blocks in the grid?
d. What is the number of threads that execute the code on line 05?

在这里插入图片描述

答案:a、16*32=512;b、48640;c、95;d、45000

  1. Consider a 2D matrix with a width of 400 and a height of 500. The matrix is
    stored as a one-dimensional array. Specify the array index of the matrix
    element at row 20 and column 10:
    a. If the matrix is stored in row-major order.
    b. If the matrix is stored in column-major order.

答案:a、20*400+10=8010

​ b、10*500+20=5020

  1. Consider a 3D tensor with a width of 400, a height of 500, and a depth of 300

    The tensor is stored as a one-dimensional array in row-major order.
    Specify the array index of the tensor element at x 5 10, y 5 20, and z 5 5.

答案: 5 * (400 * 500) + 10 * 400 + 5 = 1004005

勘误

在这里插入图片描述

​ 上一篇博客中,这个图里面的d_a的类型写错了,应该是int* d_a,而不是void* d_a。传入函数的是(void**)&d_a,函数结束后,d_a还是int*类型。

http://www.shuangfujiaoyu.com/news/56265.html

相关文章:

  • 怎么用手机网站做软件微信广告平台推广
  • 网站建设的专业知识网络网站
  • 平顶山做网站推广郑州整站关键词搜索排名技术
  • 网站空间 按流量计费短视频推广平台
  • 开封网站优化香港旺道旺国际集团
  • 网站网站设计淘宝网店的seo主要是什么
  • 网站开发流程css软文文案案例
  • 辽阳企业网站建设团队成都sem优化
  • 协会网站建设方案书江西优化中心
  • 邯郸网站设计价格长沙关键词优化新报价
  • 企业年金查询app百度关键词优化软件怎么样
  • 深圳网站建设公司服务商今天刚刚最新消息2023
  • 杭州市网站建设公司中国网民博客 seo
  • 平面设计欣赏网站推荐成都百度推广账户优化
  • wordpress手动裁剪宁波seo排名公司
  • 网站建设创业书什么是搜索引擎营销?
  • 最靠谱的网站最佳搜索引擎磁力王
  • wordpress站群源码windows优化大师如何卸载
  • 最早做网站的那批人10种营销方法
  • 杭州外贸建站怎么建立一个自己的网站
  • 免费域名注册网站女装标题优化关键词
  • 石家庄服务大型建站普通话手抄报文字内容
  • 做网站用什么配资电脑品牌推广策划营销策划
  • 做外贸网站多少钱怎样注册自己网站的域名
  • 百度没有投放的网站点击百度seo引流
  • 大型网站建设兴田德润简介百度搜索推广的定义
  • 网站迁移到别的服务器要怎么做济南seo整站优化价格
  • 定制网站需要多少钱哪个网站是免费的
  • 肇庆市网站建设平台西点培训班一般要多少学费
  • 个人网站如何做移动端上海网站关键词排名优化报价