当前位置: 首页 > news >正文

快餐网站模板微商软文推广平台

快餐网站模板,微商软文推广平台,建立一个网站要什么条件,做网站和APP需要多少钱以前不甘心,总想争个对错,现在不会了 人心各有所愿,没有道理可讲 —— 25.1.18 计算Bert模型结构中的参数数量 BertModel.from_pretrained():用于从预训练模型目录或 Hugging Face 模型库加载 BERT 模型的权重及配置。 参数名称…

以前不甘心,总想争个对错,现在不会了

人心各有所愿,没有道理可讲

                                                        —— 25.1.18

计算Bert模型结构中的参数数量 

BertModel.from_pretrained():用于从预训练模型目录或 Hugging Face 模型库加载 BERT 模型的权重及配置。

参数名称类型是否必填说明
pretrained_model_name_or_path字符串模型名称(如 bert-base-uncased)或本地路径。
configBertConfig对象自定义配置类,用于覆盖默认配置。
state_dict字典预训练权重字典,用于部分加载模型。
cache_dir字符串缓存目录,用于存储下载的模型文件。
from_tf布尔值是否从 TensorFlow 模型加载权重,默认为 False
ignore_mismatched_sizes布尔值是否忽略权重大小不匹配的错误,默认为 False
local_files_only布尔值是否仅从本地文件加载模型,默认为 False

return_dict参数:

  • 当 return_dict 设置为 True 时,forward() 方法返回一个 BaseModelOutput 对象,该对象包含了模型的各种输出,如最后一层的隐藏状态、[CLS] 标记的输出等。
  • 当 return_dict 设置为 False 时,forward() 方法返回一个元组,包含与 BaseModelOutput 对象相同的元素,但不包含对象结构。

numel():计算张量(Tensor)中的元素总数

参数名称类型是否必填说明
tensortorch.Tensor输入的PyTorch张量。

parameters():返回模型中所有可训练参数的迭代器。

参数名称类型是否必填说明
recurse布尔值是否递归获取子模块的参数,默认为True
import torch
import math
import torch.nn as nn
import numpy as np
from transformers import BertModelmodel = BertModel.from_pretrained("F:\人工智能NLP\\NLP资料\week6 语言模型//bert-base-chinese", return_dict=False)
n = 2                       # 输入最大句子个数
vocab = 21128               # 词表数目
max_sequence_length = 512   # 最大句子长度
embedding_size = 768        # embedding维度
hide_size = 3072            # 隐藏层维数
num_layers = 1              # 隐藏层层数# embedding过程中的参数,其中 vocab * embedding_size是词表embedding参数, max_sequence_length * embedding_size是位置参数, n * embedding_size是句子参数
# embedding_size + embedding_sizes是layer_norm层参数
embedding_parameters = vocab * embedding_size + max_sequence_length * embedding_size + n * embedding_size + embedding_size + embedding_size# self_attention过程的参数, 其中embedding_size * embedding_size是权重参数,embedding_size是bias, *3是K Q V三个
self_attention_parameters = (embedding_size * embedding_size + embedding_size) * 3# self_attention_out参数 其中 embedding_size * embedding_size + embedding_size + embedding_size是self输出的线性层参数,embedding_size + embedding_size是layer_norm层参数
self_attention_out_parameters = embedding_size * embedding_size + embedding_size + embedding_size + embedding_size# Feed Forward参数 其中embedding_size * hide_size + hide_size第一个线性层,embedding_size * hide_size + embedding_size第二个线性层,
# embedding_size + embedding_size是layer_norm层
feed_forward_parameters = embedding_size * hide_size + hide_size + embedding_size * hide_size + embedding_size + embedding_size + embedding_size# pool_fc层参数
pool_fc_parameters = embedding_size * embedding_size + embedding_size# 模型总参数 = embedding层参数 + self_attention参数 + self_attention_out参数 + Feed_Forward参数 + pool_fc层参数
all_paramerters = embedding_parameters + (self_attention_parameters + self_attention_out_parameters + \feed_forward_parameters) * num_layers + pool_fc_parameters
print("模型实际参数个数为%d" % sum(p.numel() for p in model.parameters()))
print("diy计算参数个数为%d" % all_paramerters)

http://www.shuangfujiaoyu.com/news/55604.html

相关文章:

  • 网站界面排版好看cilimao磁力猫在线搜索
  • 商业街网站建设方案南宁网
  • 网站界面分析深圳推广系统
  • 深圳网站建设费用多少钱济南优化网络营销
  • 怎样建设自己的ip地址网站爱站网关键词查询系统
  • 快站怎么搭建淘客链接昆明seo工资
  • 搜索引擎优化简历seo网站关键词优化
  • 网站名后台修改后 前台不显示软件开发网
  • 公司的网 网站打不开怎么办网店代运营公司
  • 南充做网站的公司百度扫一扫识别图片
  • 2018年做网站it培训班出来工作有人要么
  • 自己的网站怎么做美工域名交易平台
  • 网站建设需要集齐哪5份资料seo外链工具源码
  • 企业建站公司是干嘛的百度手机网页
  • 做网页素材武汉seo关键字推广
  • 国外做博彩网站安全吗百度电脑版网址
  • 如何在网站上添加qqseo指导
  • 怎样淘宝做seo网站推广营销手段有哪些
  • 网站建设 站内搜索百度软件
  • 前端做项目网站码迷seo
  • 住房和城乡建设部网站监理工程师南京seo
  • 交互网站建设东莞网络营销公司
  • 重庆汽车网站建设网址查询地址查询
  • 免费的html大作业网站找客户资源的软件
  • 商标注册申请需要什么材料seo关键词是什么
  • 河北响应式网站企业sem是什么测试
  • 专业做室内设计的网站淘宝网络营销方式
  • 新吴区推荐做网站电话推广神器
  • 找哪些公司做网站设计素材网站
  • 电脑网站网页设计网站网络推广运营