当前位置: 首页 > news >正文

个人如何做网站yandex引擎搜索入口

个人如何做网站,yandex引擎搜索入口,竭诚网络网站建设,虚拟主机技术目录 一、区域Ω的剖分 二、三角形一次元 三、一次元的基函数与面积坐标 四、三角形二次元及其基函数 前两节我们介绍了有限元基本概念和变分理论的推导,本节我们继续探讨有限元空间的构造。 一、区域Ω的剖分 对矩形区域进行三角剖分,其中x方向剖…

目录

一、区域Ω的剖分

二、三角形一次元

三、一次元的基函数与面积坐标

四、三角形二次元及其基函数


        前两节我们介绍了有限元基本概念和变分理论的推导,本节我们继续探讨有限元空间的构造。 

一、区域Ω的剖分

        对矩形区域\Omega =[x_{a},x_{b}]\times [y_{c},y_{d}]进行三角剖分,其中x方向剖分m份,y方向剖分n份,共得到(m+1)(n+1)个节点及2mn个三角形单元。图1是m=5,n=4的剖分情况,节点编号用数字表示,单元用带圈的数字表示。为了实现后面的程序编写,必须明确单元上的局部编号与整体编号,如图2所示。通过设置剖分数,可以建立单元上整体编号与局部编号之间的关系,可设置二维数组lnd[\;][\;],第一个参数为单元编号,第二个参数为局部节点编号,如lnd[3][0]=8等,表示第3个单元第0号局部节点的整体节点编号为8,而lnd[2][1]=2则表示第2个单元第1号局部节点的整体节点编号为2。可以通过循环设置所有的节点。

图1 三角形剖分

图2 三角形单元的整体编号i,j,k与局部编号0,1,2

二、三角形一次元

        前面两节提到,可以选取V_{h}\subset V=H^{1}_{0}(\Omega)为分片连续的一次多项式函数空间,也就是在每个单元e上,V_{h}中的函数都是一次多项式,且要保证整体连续。因此对于相邻的两个三角形单元,它们有一条公共边,只要保证分片一次多项式在这条公共边的两个端点(也是剖分节点)处函数值相同即可保证函数整体连续。这样,分片一次多项式在每个单元上的表达式就可以由它在3个顶点处的值唯一确定。下面,在节点P_{i},P_{j},P_{k}(对应整体编号为i,j,k)的单元e上考虑数值解u_{h}的表达式,尝试用基函数来表示u_{h}(x,y)|_{e}=u_{i}\lambda _{0}(x,y)+u_{j}\lambda _{1}(x,y)+u_{k}\lambda _{2}(x,y),其中\lambda_{0},\lambda_{1},\lambda_{2}为待定基函数,满足以下性质:

\lambda_{0}(P_{i})=1,\lambda_{0}(P_{j})=0,\lambda_{0}(P_{k})=0 \;\;\;\;\; (1)

\lambda_{1}(P_{i})=0,\lambda_{1}(P_{j})=1,\lambda_{1}(P_{k})=0 \;\;\;\;\; (2)

\lambda_{2}(P_{i})=0,\lambda_{2}(P_{j})=0,\lambda_{2}(P_{k})=1 \;\;\;\;\; (3)

且它们都是一次函数。这样,数值解u_{h}在单元e上的表达式完全由它在3个顶点处P_{i},P_{j},P_{k}处的值u_{i},u_{j},u_{k}决定,u_{i},u_{j},u_{k}可以看作精确解u在整体编号i,j,k的节点处的近似。一旦把所有u_{i},i=0,1,\cdots,(m+1)(n+1)-1求出来(边界点除外,因为u_{h}\in V_{h}从而边界节点处u_{h}的值为零),则数值解u_{h}的表达式也就确定了。所以现在的基本问题是对离散问题式

u_{h}(x,y)\in V_{h},使得a(u_{h},v_{h})=(f,v_{h})\;\;\;\;\forall v_{h}(x,y)\in V_{h}

建立u_{i},i=0,1,\cdots,(m+1)(n+1)-1的关系式。

三、一次元的基函数与面积坐标

        由于基函数在单元e上是一次多项式,尝试设\lambda_{0}(x,y)|_{e}=ax+by+c,其中a,b,c为待定系数,且单元e上s号节点P_{s}的坐标为(x_{s},y_{s}),s=i,j,k,则由条件公式(1)可知:

\left\{\begin{matrix} ax_{i}+by_{i}+c=1,\\ ax_{j}+by_{j}+c=0,\\ ax_{k}+by_{k}+c=0, \end{matrix}\right.\;\;is\begin{pmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{pmatrix}\begin{pmatrix} a\\ b\\ c \end{pmatrix}=\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}

从而解出

a=\frac{\begin{vmatrix} 1 & y_{i} & 1\\ 0 & y_{j} & 1\\ 0 & y_{k} & 1 \end{vmatrix}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}=\frac{y_{j}-y_{k}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}                b=\frac{\begin{vmatrix} x_{i} & 1 & 1\\ x_{j} & 0 & 1\\ x_{k} & 0 & 1 \end{vmatrix}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}=\frac{x_{k}-x_{j}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}

c=\frac{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 0\\ x_{k} & y_{k} & 0 \end{vmatrix}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}=\frac{x_{j}y_{k}-x_{k}y_{j}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}

代入可得

\lambda_{0}(x,y)|_{e}=\frac{x(y_{j}-y_{k})+y(x_{k}-x_{j})+(x_{j}y_{k}-x_{k}y_{j})}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}=\frac{\begin{vmatrix} x & y & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} &y_{k} &1 \end{vmatrix}}

可以证明以P_{i},P_{j},P_{k}(逆时针排列)为顶点的三角形单元e的面积S_{e}=\frac{1}{2}\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}

        于是,若\Delta P_{i}P_{j}P_{k}内有一点P的坐标为(x,y),如图3所示,则

\lambda_{0}(x,y)|_{e}=\frac{\begin{vmatrix} x & y & 1\\ x_{j} & y_{j} & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} &y_{k} &1 \end{vmatrix}}=\frac{2S_{\Delta PP_{j}P_{k}}}{2S_{\Delta P_{i}P_{j}P_{k}}}=\frac{S_{\Delta PP_{j}P_{k}}}{S_{e}}\;\;\;(4)

图3 三角形单元

 同理,

\lambda_{1}(x,y)|_{e}=\frac{\begin{vmatrix} x_{i} & y_{i} & 1\\ x & y & 1\\ x_{k} & y_{k} & 1 \end{vmatrix}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} &y_{k} &1 \end{vmatrix}}=\frac{S_{\Delta P_{i}PP_{k}}}{S_{e}},\lambda_{2}(x,y)|_{e}=\frac{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x & y & 1 \end{vmatrix}}{\begin{vmatrix} x_{i} & y_{i} & 1\\ x_{j} & y_{j} & 1\\ x_{k} &y_{k} &1 \end{vmatrix}}=\frac{S_{\Delta P_{i}P_{j}P}}{S_{e}}\;\;\;(5)

注意到S_{e}=S_{\Delta P_{i}P_{j}P_{k}}=S_{\Delta PP_{j}P_{k}}+S_{\Delta P_{i}PP_{k}}+S_{\Delta P_{i}P_{j}P},显然有

\lambda_{0}+\lambda_{1}+\lambda_{2}=1\;\;\;\;(6)

也就是说\lambda_{0},\lambda_{1},\lambda_{2}不是相互独立的。换言之,\Delta P_{i}P_{j}P_{k}内任一点P(x,y),必然可以唯一对应一组坐标(\lambda_{0},\lambda_{1}),基函数\lambda_{0},\lambda_{1},\lambda_{2}被称为重心坐标。由于它们又都是三角形的面积比,所以它们也称为面积坐标。面积坐标在有限元分析中非常重要,它是从一般单元变化到标准单元的工具,也是进行Sobolev空间范数估计的有效手段。事实上,公式(4)、(5)可以反解出直角坐标(x,y)与重心坐标之间的对应关系式:

\left\{\begin{matrix} x=x_{i}\lambda_{0}+x_{j}\lambda_{1}+x_{k}\lambda_{2}\\ y=y_{i}\lambda_{0}+y_{j}\lambda_{1}+y_{k}\lambda_{2} \end{matrix}\right.\;\;\;\; or\;\;\;\left\{\begin{matrix} x=(x_{i}-x_{k})\lambda_{0}+(x_{j}-x_{k})\lambda_{1}+x_{k}\\ y=(y_{i}-y_{k})\lambda_{0}+(y_{j}-y_{k})\lambda_{1}+y_{k} \end{matrix}\right.\;\;\;(7)

从而可以实现将一般的三角形单元\Delta P_{i}P_{j}P_{k}变换成标准单元\widehat{e},如图4所示。

图4 利用仿射坐标变换从一般单元变到标准单元

四、三角形二次元及其基函数

        我们除了可以选取V_{h}为分片连续的一次多项式函数空间外,也可以选取V_{h}为分片连续的二次多项式函数空间,也就是在每个单元e上,V_{h}中的函数都是二次多项式,且要保证整体连续。因此在每个单元e上,V_{h}中的分片二次多项式函数v(x,y)就形如v|_{e}=Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F,其中A,B,C,D,E,F均为待定常数,从而需要有6个条件来唯一确定这个表达式。与一次元相似,要确定这6个常数,我们可以取三角形单元e的3个顶点及3条边的中点值作为条件(这些条件称为自由度),即分片二次多项式在每个单元上的表达式就可以由它在这个单元3个顶点和3条边的中点处的值唯一确定,这样也可以保证函数的整体连续性。事实上,在相邻的两个三角形单元上的公共边上,位置变量x和y有一个直线方程的线性约束,从而v(x,y)在这条边上成为一个只关于自变量x的二次函数,这个函数在3个不同的点(两个顶点和一个中点)上取值相同,说明v(x,y)在公共边上的表达式所示唯一确定的,也就是说,这个分片二次多项式在相邻两个单元上虽然整体表达式不相同,但在其公共边上表达式相同,这就保证了函数在\Omega上整体连续,从而实现V_{h}\subset V=H^{1}_{0}(\Omega)

        对于以上的三角形二次元,由于涉及到三角形单元的中点,所以尽管三角形剖分情况不变,即共有2mn个三角形单元,但整体节点数变为(2m+1)(2n+1)个,且节点的编号将随之发生改变。例如,图1将变为图5。

图5 三角形剖分及二次元节点图(各顶点也包含在内)

        接下来,在单元e上考虑数值解u_{h}\in V_{h}的表达式,其中e的3个顶点为P_{i},P_{j},P_{k}(对应整体编号为i,j,k),3条边的中点为P_{jk},P_{ki},P_{ij}(对应整体编号为\frac{j+k}{2},\frac{k+i}{2},\frac{i+j}{2}),如图6。

图6 三角形二次元

        u_{h}在单元e上的表达式尝试用基函数表示为

u_{h}(x,y)|_{e}=u_{i}\varphi_{0}(x,y)+u_{j}\varphi_{1}(x,y)+u_{k}\varphi_{2}(x,y)+u_{jk}\Psi_{0}(x,y)+u_{ki}\Psi_{1}(x,y)+u_{ij}\Psi_{2}(x,y)

其中\varphi_{0},\varphi_{1},\varphi_{2},\Psi_{0},\Psi_{1},\Psi_{2}为待定基函数,满足以下性质:

\varphi_{0}(P_{i})=1,\varphi_{0}(P_{j})=0,\varphi_{0}(P_{k})=0,\varphi_{0}(P_{jk})=0,\varphi_{0}(P_{ki})=0,\varphi_{0}(P_{ij})=0,

\varphi_{1}(P_{i})=0,\varphi_{1}(P_{j})=1,\varphi_{1}(P_{k})=0,\varphi_{1}(P_{jk})=0,\varphi_{1}(P_{ki})=0,\varphi_{1}(P_{ij})=0,

\varphi_{2}(P_{i})=0,\varphi_{2}(P_{j})=0,\varphi_{2}(P_{k})=1,\varphi_{2}(P_{jk})=0,\varphi_{2}(P_{ki})=0,\varphi_{2}(P_{ij})=0,

\Psi_{0}(P_{i})=0,\Psi_{0}(P_{j})=0,\Psi_{0}(P_{k})=0,\Psi_{0}(P_{jk})=1,\Psi_{0}(P_{ki})=0,\Psi_{0}(P_{ij})=0,

\Psi_{1}(P_{i})=0,\Psi_{1}(P_{j})=0,\Psi_{1}(P_{k})=0,\Psi_{1}(P_{jk})=1,\Psi_{1}(P_{ki})=1,\Psi_{1}(P_{ij})=0,

\Psi_{2}(P_{i})=0,\Psi_{2}(P_{j})=0,\Psi_{2}(P_{k})=0,\Psi_{2}(P_{jk})=1,\Psi_{2}(P_{ki})=0,\Psi_{2}(P_{ij})=1. 

        利用重心坐标,很容易将上述基函数表示出来,即有分别对应于三角形单元3个顶点P_{i},P_{j},P_{k}的基函数:

\varphi_{0}(x,y)=\lambda_{0}(2\lambda_{0}-1),\varphi_{1}(x,y)=\lambda_{1}(2\lambda_{1}-1),\varphi_{2}(x,y)=\lambda_{2}(2\lambda_{2}-1)

及对应于三角形3条边中点P_{jk},P_{ki},P_{ij}的 基函数:

\Psi_{0}=4\lambda_{1}\lambda_{2},\Psi_{1}=4\lambda_{2}\lambda_{0},\Psi_{2}=4\lambda_{0}\lambda_{1}

至此,数值解 u_{h}在单元e上的表达式就确定为:

u_{h}(x,y)|_{e}=u_{i}\lambda_{0}(2\lambda_{0}-1)+u_{j}\lambda_{1}(2\lambda_{1}-1)+u_{k}\lambda_{2}(2\lambda_{2}-1)+4u_{jk}\lambda_{1}\lambda_{2}+4u_{ki}\lambda_{2}\lambda_{0}+4u_{ij}\lambda_{0}\lambda_{1}

        综上,有限元空间X_{h}由一个三元组(e,V_{h},\sum)确定。具体的,设\tau_{h}是区域Ω的一个剖分,e是剖分\tau_{h}中的单元,参数h定义为所有单元的最大直径,即h=\underset{e\in\tau_{h}}{max}(diam(e))V_{h}是选定的分片多项式函数空间,\sum是每个e上用于唯一确定V_{h}内的多项式函数所需要的条件。

http://www.shuangfujiaoyu.com/news/54796.html

相关文章:

  • 做网站的公司还市场吗注册网站平台要多少钱
  • 房地产网站建设公司网络推广渠道公司
  • 网站的后台是开发做的qq群推广网站
  • 国内做家具外贸的网站seo网站内容优化
  • 网站左悬浮代码怎样加入网络营销公司
  • 人与狗做的电影网站餐饮培训
  • 网站建设的目的包含哪些方面免费建站哪个比较好
  • 哪个网站可以免费做网页信息流广告的特点
  • 自建站跨境电商seo网站推广与优化方案
  • 湖北省荆门市城乡建设网站宣传页面怎么制作
  • 网站制作公司排名互联网下的网络营销
  • axure做网站原型模板app下载推广平台
  • 汉口专业网站推广公司什么是seo网站优化
  • 一级a做爰片365网站东莞网络营销推广软件
  • 网站标题写什么作用百度搜索推广收费标准
  • 网页制作模板怎么制作优化技术
  • 巨鹿企业做网站南京seo公司排名
  • 品牌查询网站 优帮云搜索引擎排名2022
  • 在哪个网站做整形网站策划是什么
  • 淘宝客网站下载北京seo怎么优化
  • 现在主流网站用什么做的合肥seo网络优化公司
  • 做网站推广有哪些公司怎么免费创建个人网站
  • ruby on rails 社区网站开发 pdf太原百度seo排名
  • 用路由器做网站南昌seo排名收费
  • 网站开发平台的公司百度网站怎么优化排名
  • 优化营商环境单页面seo搜索引擎优化
  • 网站注册模板ios微信上的pdf乱码
  • 营销型集团网站建设广西seo优化
  • 北京学校网站建设公司软文范例大全300字
  • 网站视频转码软件关键词优化有哪些作用