当前位置: 首页 > news >正文

网站banner用什么做广告营销方式有哪几种

网站banner用什么做,广告营销方式有哪几种,绵阳网站建设,长景园林这个网站谁做的目录 1. GoogleNet 1.1 Inception模块 1.1.1 1x1卷积 1.2 辅助分类器结构 1.3 GoogleNet网络结构图 1. GoogleNet GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任…

目录

1. GoogleNet

1.1 Inception模块

1.1.1 1x1卷积

1.2 辅助分类器结构

1.3 GoogleNet网络结构图


1. GoogleNet

GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。它在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异的成绩,引入了"Inception"模块,这是一种多尺度卷积核并行结构,可以增强网络对不同尺度特征的感知能力。

1.1 Inception模块

GoogleNet引入了"Inception"模块,该模块使用不同尺度的卷积核来同时捕获不同尺度的特征。这有助于网络更好地适应不同大小的对象和结构。每个Inception模块包含多个并行的卷积层和池化层,然后将它们的输出在通道维度上连接起来。

在这里插入图片描述

 左图呢,是论文中提出的inception原始结构,右图是inception加上降维功能的结构。

先看左图,inception结构一共有4个分支,也就是说我们的输入的特征矩阵并行的通过这四个分支得到四个输出,然后在将这四个输出在深度维度(channel维度)进行拼接得到我们的最终输出(注意,为了让四个分支的输出能够在深度方向进行拼接,必须保证四个分支输出的特征矩阵高度和宽度都相同)。

  • 分支1是卷积核大小为1x1的卷积层,stride=1,
  • 分支2是卷积核大小为3x3的卷积层,stride=1,padding=1(保证输出特征矩阵的高和宽和输入特征矩阵相等),
  • 分支3是卷积核大小为5x5的卷积层,stride=1,padding=2(保证输出特征矩阵的高和宽和输入特征矩阵相等),
  • 分支4是池化核大小为3x3的最大池化下采样,stride=1,padding=1(保证输出特征矩阵的高和宽和输入特征矩阵相等)

再看右图,对比左图,就是在分支2,3,4上加入了卷积核大小为1x1的卷积层,目的是为了降维,减少模型训练参数,减少计算量。

注意: 如果保持输入的图像尺寸不变,在步长为1的情况下,padding=(卷积核大小-1)/  2 。

1.1.1 1x1卷积

1x1卷积: 1x1卷积在Inception模块中被广泛使用,它用于降低通道数,从而减少计算量。1x1卷积的作用类似于将不同通道的特征进行线性组合,以创建一种综合特征表示。

同样是对一个深度为512的特征矩阵使用65个大小为5x5的卷积核进行卷积,不使用1x1卷积核进行降维话一共需要819200个参数,如果使用1x1卷积核进行降维一共需要50688个参数,明显少了很多。

在这里插入图片描述

 

1.2 辅助分类器结构

为了解决梯度消失问题,GoogleNet在中间某些层添加了辅助分类器。这些辅助分类器有助于训练过程中的梯度传播,同时还可以提供网络中间层的监督信号,有助于更快地训练网络。

有两个辅助分类器,结构如下图:

在这里插入图片描述

 这两个辅助分类器的输入分别来自Inception(4a)和Inception(4d)。

  • 辅助分类器的第一层是一个平均池化下采样层,池化核大小为5x5,stride=3
  • 第二层是卷积层,卷积核大小为1x1,stride=1,卷积核个数是128
  • 第三层是全连接层,节点个数是1024
  • 第四层是全连接层,节点个数是1000(对应分类的类别个数)

1.3 GoogleNet网络结构图

每个卷积层的卷积核个数如何确定呢,下面是原论文中给出的参数列表,对于我们搭建的Inception模块,所需要使用到参数有#1x1, #3x3reduce, #3x3, #5x5reduce, #5x5, poolproj,这6个参数,分别对应着所使用的卷积核个数。

在这里插入图片描述

 其中#1x1对应着分支1上1x1的卷积核个数,#3x3 reduce对应着分支2上1x1的卷积核个数,#3x3对应着分支2上3x3的卷积核个数,#5x5 reduce对应着分支3上1x1的卷积核个数,#5x5对应着分支3上5x5的卷积核个数,pool proj对应着分支4上1x1的卷积核个数。

如下图所示:

在这里插入图片描述

 下面是GoogleNet整体网络结构如下图:

在这里插入图片描述

 

http://www.shuangfujiaoyu.com/news/50578.html

相关文章:

  • 企业网站项目的流程宁波seo快速优化平台
  • 网站不收录windows优化大师手机版
  • 如何做网站弹窗百度双十一活动
  • 百度网页下载推广优化方案
  • 日本做美食视频网站有哪些seo自学网视频教程
  • 沧州做网站费用海外建站
  • 做网站加入广告联盟百度查重入口
  • 网站栏目推介怎么做建网站一般需要多少钱
  • 做网站的好公司有哪些百度一下百度主页度
  • 广东官方移动网站建设哪家好seo优化网站的手段
  • wordpress网站运行时间代码快速网站搭建
  • 好的网站制作网站seo博客推广
  • 做动态网站什么语言好爱站长尾词挖掘工具
  • html5网站开发测试怎么建立企业网站
  • 宁德时代网站哪个公司做的电商营销推广方法
  • 17网站一起做网店广州国大百度链接提交
  • 家庭宽带做网站服务器吗大数据营销是什么
  • 建设企业网站可行性分析免费网站搭建平台
  • 建德做网站网站备案查询工信部官网
  • 龙华做棋牌网站建设哪家好引擎优化
  • 中山精品网站建设机构磁力搜索引擎torrentkitty
  • 武汉影楼网站建设网站关键词全国各地的排名情况
  • 南宁好的网站建设公司免费网站怎么注册
  • 最好用的网站推广经验西安百度推广开户多少钱
  • 网站建设和Javaseo百度贴吧
  • 南阳做网站公司wordpress免费网站
  • 一个网站做3个关键词够开发一个平台需要多少钱
  • 扬州哪家做网站好精准营销的典型案例
  • 济宁b2b网站建设服务俄罗斯引擎搜索
  • 成都网页开发网站优化效果