当前位置: 首页 > news >正文

常见的网络广告南京百度seo排名优化

常见的网络广告,南京百度seo排名优化,怎样做国外网站推广,wordpress做外贸力扣日记:【栈与队列篇】前 K 个高频元素 日期:2023.10.31 参考:代码随想录、力扣 347. 前 K 个高频元素 题目描述 难度:中等 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意…

力扣日记:【栈与队列篇】前 K 个高频元素

日期:2023.10.31
参考:代码随想录、力扣

347. 前 K 个高频元素

题目描述

难度:中等

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

提示:

  • 1 <= nums.length <= 105
  • k 的取值范围是 [1, 数组中不相同的元素的个数]
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

题解

class Solution {
#define SOLUTION 2
public:vector<int> topKFrequent(vector<int>& nums, int k) {
#if SOLUTION == 1// 时间复杂度: O(n) + O(n) + O(nlogn) + O(k) = O(nlogn)// 空间复杂度: O(n+n)unordered_map<int, int> cnt;for (const auto& n: nums) {cnt[n]++;}// 将哈希表的内容复制到 vector// 使用迭代器范围构造函数(iterator range constructor)创建 sortedVector// 这个构造函数接受两个迭代器,它会遍历 cnt 中的元素,然后复制它们到 sortedVector 中vector<pair<int, int>> sortedVector(cnt.begin(), cnt.end());// 按第二个值的大小对 vector 进行排序(从大到小)sort(sortedVector.begin(), sortedVector.end(), [](const pair<int, int>& a, const pair<int, int>& b) { // 匿名函数作为比较器参数return a.second > b.second; // 前者大于后者时返回true,表示前者应该在后者前面(大在前、小在后)});// 取前k个元素int count = 0;vector<int> result;for (const auto& pair : sortedVector) {result.push_back(pair.first);count++;if (count >= k) break;}return result;}
#elif SOLUTION == 2// unordered_map + 小顶堆// O(nlogk), O(n+k)// 之所以用堆,是因为没必要对n个元素都进行排序,只需要维护前k个元素即可// 1. 首先用map遍历一遍数组,确定每个数出现的频率unordered_map<int, int> cnt;for (const auto& n: nums) {cnt[n]++;}// 2. 使用小顶堆遍历map,维护出现频率最高的前k个元素// 小顶堆:本质是一个二叉树,每个父结点的值小于子结点,即根结点的值是最小的,值从小到大排列// 关于为什么用小顶堆而不是用大顶堆:/*如果是大顶堆的话,由于其仅维护k个元素,每次push进元素时都需要pop掉根结点元素而根结点是值最大的元素,这样的话会导致最后大顶堆中都是出现频率最低的前k个元素所以要用小顶堆,每次pop元素弹出值最小的元素,维护出现频率最高的前k个元素*/// 小顶堆通过优先级队列实现priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;// 用固定大小为k的小顶堆,扫面所有频率的数值for (unordered_map<int, int>::iterator it = cnt.begin(); it != cnt.end(); it++) {pri_que.push(*it); // 把it指向的<key,value>放进队列if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为kpri_que.pop();}}// 3. 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组vector<int> result(k);for (int i = k - 1; i >= 0; i--) {result[i] = pri_que.top().first;pri_que.pop();}return result;}// 小顶堆class mycomparison {public:bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {return lhs.second > rhs.second; // 为什么是>(大的在前,小的在后???)}};
#endif
};

复杂度

  • 哈希map + 快排:
    • 时间复杂度:O(nlogn)
    • 空间复杂度:O(n)
  • 哈希map + 小顶堆
    • 时间复杂度:O(nlogk)
    • 空间复杂度:O(n)

思路总结

  • 解法1:哈希map + 快排
    • 哈希map不能直接排序,要转换为vector才能进行排序
      • 1.将哈希表的内容复制到 vector
      • 2.使用迭代器范围构造函数(iterator range constructor)创建 sortedVector
        • 这个构造函数接受两个迭代器,它会遍历 cnt 中的元素,然后复制它们到 sortedVector 中
        • vector<pair<int, int>> sortedVector(cnt.begin(), cnt.end());
      • 3.按第二个值的大小对 vector 进行排序(从大到小)
      sort(sortedVector.begin(), sortedVector.end(), [](const pair<int, int>& a, const pair<int, int>& b) { // 匿名函数作为比较器参数return a.second > b.second; // 前者大于后者时返回true,表示前者应该在后者前面(大在前、小在后)});
      
  • 解法2:哈希map + 小顶堆
    • 之所以用小顶堆而不用快排,是因为没必要对n个元素都进行排序,只需要维护前k个元素即可(快排需要对n个元素进行排序,O(nlogn),小顶堆每次pop和push一个元素只需要logk,即对所有元素的总时间复杂度为O(nlogk)
    • 思路步骤:
    • 1.首先用map遍历一遍数组,确定每个数出现的频率
    • 2.使用小顶堆遍历map,维护出现频率最高的前k个元素
      • 小顶堆:本质是一个二叉树,每个父结点的值小于子结点,即根结点的值是最小的,值从小到大排列
      • 关于为什么用小顶堆而不是用大顶堆:
        如果是大顶堆的话,由于仅维护k个元素,每次push进元素时都需要pop掉根结点元素
        而根结点是值最大的元素,这样的话会导致最后大顶堆中都是出现频率最低的前k个元素
        所以要用小顶堆,每次pop元素弹出值最小的元素,维护出现频率最高的前k个元素
      • 小顶堆通过优先级队列实现:其中比较器设置为"左值>右值"(可能与优先级队列的底层实现有关)—— 注意这与快排cmp是相反的,快排cmp“左值>右值"是从大到小降序排列,而优先级队列"左值>右值"是小顶堆(根小子大)
    • 3.找出前K个高频元素,因为小顶堆先弹出的是最小的(取first即元素的键),所以倒序来输出到数组
  • 学会小顶堆的实现以及小顶堆遍历的写法:
// 小顶堆实现
class mycomparison {
public:bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {return lhs.second > rhs.second;}
};
// 优先级队列定义与遍历
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;
// 参数1:优先级队列的元素类型,参数2:优先级队列自身类型,参数3:优先级队列的比较器(决定是小顶堆还是大顶堆)
for (unordered_map<int, int>::iterator it = cnt.begin(); it != cnt.end(); it++) {pri_que.push(*it); // 把it指向的<key,value>放进队列if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为kpri_que.pop();}
}
http://www.shuangfujiaoyu.com/news/47708.html

相关文章:

  • 东莞手机网站模板广州seo推广
  • 网站建设捌金手指专业9做一个网站需要多少钱
  • 网站院长信箱怎么做重庆百度地图
  • 网站制作 那种语言好站内推广
  • 毕业设计做网站难吗注册google账号
  • 中国铁建商城电子商务平台seo中心
  • 卖水果网站建设的策划书口碑营销公司
  • 现在中国空间站有几个人网站推广优化公司
  • HTML网站制作设计百度游戏app下载
  • 网站注册会绑定式收费吗百度指数查询
  • 做教育的网站需要资质吗优化大师客服电话
  • 免费web服务器网站澳门搜索引擎营销的主要方法包括
  • 职业学校网站建设方案杭州seo排名优化
  • wordpress链接乱码长沙百度seo代理
  • 成都公安网站备案东营百度推广公司
  • wordpress美国空间网站seo运营培训机构
  • 删负面的网站北京seo执行
  • 郑州网站公司东莞市民最新疫情
  • 网站开发方式哪四种广告推广图片
  • 那个视频网站可以做桌面背景百度店铺
  • 全球最火的十大游戏天津百度seo代理
  • adobe做网站网站推广找哪家公司好
  • 做网站信科网站建设seo优化几个关键词
  • 石家庄网站制作报价关键词挖掘工具
  • 做网站需要商标注册吗推广普通话的意义是什么
  • 用django做的网站如何自己弄一个网站
  • wordpress 2.5.1漏洞seo综合查询平台官网
  • 昆明企业网站开发网页关键词优化软件
  • 做生蚝批发登录什么网站好站内推广
  • 沟通交流类网站有哪些中国第三波疫情将在9月份