当前位置: 首页 > news >正文

自己用自己电脑做网站空间100个商业经典案例

自己用自己电脑做网站空间,100个商业经典案例,二手网站建设,网站建设与管理淘宝目录 二维随机变量及其分布离散型随机变量连续型随机变量边缘分布边缘概率密度举例边缘概率密度 条件概率密度边缘概率密度与条件概率密度的区别边缘概率密度条件概率密度举个具体例子 参考资料 二维随机变量及其分布 离散型随机变量 把所有的概率,都理解成不同质量…

目录

  • 二维随机变量及其分布
    • 离散型随机变量
    • 连续型随机变量
    • 边缘分布
    • 边缘概率密度
      • 举例
      • 边缘概率密度
    • 条件概率密度
    • 边缘概率密度与条件概率密度的区别
      • 边缘概率密度
      • 条件概率密度
      • 举个具体例子
  • 参考资料

二维随机变量及其分布

离散型随机变量

在这里插入图片描述

把所有的概率,都理解成不同质量的物体,这些物体就分布在二维平面上(左图)。再把这些物体都看成是精简的质点。

如果 f ( x , y ) f(x,y) f(x,y)是其中的某个点的话,那么 F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y)=P(X≤x, Y≤y) F(x,y)=P(Xx,Yy)就是该点左下角所有质点的质量叠加。
在这里插入图片描述

连续型随机变量

它就不再是一个个质点了,而是一个个物体。 F ( x , y ) F(x,y) F(x,y)叫联合分布函数。其分布函数仍然是质量。概率密度就是面密度(例如kg/m^2).
在这里插入图片描述
如果你要给爱人送一个礼物,中间部分是黄金做的,边缘部分是铁做的。从金到铁有一个渐变的过程,这就导致每个点的密度不太一样。(此处,这个物体是个薄片、扁平的,不研究它的厚度)。这个密度就叫概率密度 f ( x , y ) f(x,y) f(x,y)
在这里插入图片描述
F ( x , y ) F(x,y) F(x,y)还是表示点 ( x , y ) (x,y) (x,y)左下角的质量。也就是对面密度做积分,得到的就是质量。
在这里插入图片描述
把质量对应概率,把密度对应成面密度。

边缘分布

在这里插入图片描述
F X ( x ) = P ( X ≤ x ) F_X(x)=P(X≤x) FX(x)=P(Xx) F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y)=P(X≤x, Y≤y) F(x,y)=P(Xx,Yy)的关系,如下图所示。
在这里插入图片描述

边缘概率密度

在这里插入图片描述
觉得礼品不太好看,沿着y方向压缩,一直压缩到从数学上来说y的厚度已经没有了(0),如下图所示
在这里插入图片描述
此时,这根线的密度,就叫线密度(g/cm)。

在这里插入图片描述
压缩过程如下。其代表的是x位于不同点的时候的密度。
在这里插入图片描述

在这里插入图片描述
所以,右侧图中线上每个点的质量(概率),其实就是左侧图片中对应的竖线的质量,竖直做积分。

同理 F Y ( y ) F_Y(y) FY(y)就是水平做积分。

举例

下图中,黄颜色代表大多数人都位于这个位置,集中在身高和体重的均值附近,概率密度比较大。
在这里插入图片描述
F(1.6, 100),计算的是身高≤1.6m,体重≤100kg的概率。从质量的角度来说,算的是质量。
在这里插入图片描述
而边缘概率,是身高小于1.6的人的概率,也可以理解为x<1.6的质量。
在这里插入图片描述

边缘概率密度

把同身高、不同体重的人进行积分,就得到单独身高的密度分布,
在这里插入图片描述

条件概率密度

它和边缘概率密度有点像,但又不一样。它研究的是单独某一条线(水平或竖直)的密度问题。常用于求条件概率密度
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

如下图,让Y=b,此时就叫条件概率密度。只研究一条线的概率密度,
在这里插入图片描述

在这里插入图片描述

以身高体重为例子,研究体重为101斤的人,它的身高的分布,
在这里插入图片描述
在这里插入图片描述

同样,身高1m85的人,其体重的分布
在这里插入图片描述
在这里插入图片描述

边缘概率密度与条件概率密度的区别

让我用更简单的方式来解释这两个概念。

边缘概率密度

想象一下,你和朋友在玩一种抽奖游戏。这个抽奖游戏有两个转盘,一个转盘上有各种颜色(红色、绿色、蓝色),另一个转盘上有各种动物(狗、猫、鸟)。每次抽奖,你会同时转动这两个转盘,然后得到一个颜色和一个动物的组合。

现在,我们只对颜色感兴趣,不管动物是什么。这就像我们只看第一个转盘,不看第二个转盘。这时候,我们就得到了颜色的边缘概率密度。就是说,我们只关心颜色的分布情况,比如有多少次是红色的,有多少次是绿色的等等。

条件概率密度

继续这个抽奖游戏的例子。如果这次我们知道抽到的动物是狗,我们想知道在这种情况下颜色的分布情况。比如,在抽到狗的时候,有多少次是红色的,有多少次是绿色的等等。这就是条件概率密度。

条件概率密度告诉我们:在已知某个条件下(比如已经知道抽到的是狗),其他东西(比如颜色)的分布情况。

举个具体例子

假设我们玩了很多次这个游戏,统计结果如下:

  • 总共抽了100次。
  • 抽到红色的有30次,绿色的有50次,蓝色的有20次(这就是颜色的边缘概率)。
  • 抽到狗的有40次,猫的有30次,鸟的有30次。
  • 在抽到狗的40次里,红色的有10次,绿色的有20次,蓝色的有10次(这就是抽到狗时颜色的条件概率)。

所以,边缘概率密度就像我们只看颜色的总体情况,而条件概率密度就像我们知道抽到狗后再来看颜色的分布情况。

参考资料

[1] 边缘概率密度,条件概率密度,边缘分布函数,联合分布函数关系;

http://www.shuangfujiaoyu.com/news/47238.html

相关文章:

  • 南京哪家网络公司做网站优化好搜索引擎最新排名
  • 用花生棒自己做内网网站昆明seo工资
  • 一个网站多大空间seo建站系统
  • 怎麽做网站百度seo刷排名网址
  • 英文版网站制作厨师培训机构 厨师短期培训班
  • 潍坊seo网站推广网站模板下载免费
  • 网站超市源码企业培训机构有哪些
  • 网站被黑刚恢复排名又被黑了百度统计app下载
  • 任务网站的接口怎么做站长工具seo综合查询推广
  • 重庆建网站一般多少钱百度商家
  • 大学生互助联盟网站建设需求分析说明表百度网盘搜索入口
  • 外贸网站建设推广费用谷歌商店下载不了软件
  • 专业外贸网站什么是网络整合营销
  • 网站开发语言检测图片优化网站
  • 深圳维特网站建设谷歌优化培训
  • 做网站常用代码向右浮动怎么写谷歌收录提交入口
  • 图书网站建设策划书1万字营销推广软件有哪些
  • 坪山做网站2021年最为成功的营销案例
  • 互联网舆情监测中心宁波seo快速优化平台
  • 网站怎么申请百度小程序指数平台
  • 万网网站建设的子分类能显示多少个优化快速排序
  • 销售网站开发背景爱站数据
  • 个人怎样建立网站磁力云搜索引擎入口
  • 泰安网站建设流程2021年中国关键词
  • 一个公司主体可以在多个网站做备案百度推广营销怎么做
  • 做游戏奖金不被发现网站查网站流量查询工具
  • wordpress根据id调用页面seo教学视频教程
  • 建设大型的企业网站费用seo排名优化的方法
  • 做淘宝任务赚钱的网站搜索点击软件
  • 网站设计三把火科技腾讯企点qq