当前位置: 首页 > news >正文

百度博客网站模板下载河南郑州最近的热搜事件

百度博客网站模板下载,河南郑州最近的热搜事件,网站建设和网络优化,网络营销工具中最基本最重要的是该论文作者均来自于新加坡南洋理工大学 S-Lab 团队,包括博士后胡涛,博士生洪方舟,以及计算与数据学院刘子纬教授(《麻省理工科技评论》亚太地区 35 岁以下创新者)。S-Lab 近年来在顶级会议如 CVPR, ICCV, ECCV, NeurIP…

该论文作者均来自于新加坡南洋理工大学 S-Lab 团队,包括博士后胡涛,博士生洪方舟,以及计算与数据学院刘子纬教授(《麻省理工科技评论》亚太地区 35 岁以下创新者)。S-Lab 近年来在顶级会议如 CVPR, ICCV, ECCV, NeurIPS, ICLR 上发表多篇 CV/CG/AIGC 相关的研究工作,和国内外知名高校、科研机构广泛开展合作。

三维数字人生成和编辑在数字孪生、元宇宙、游戏、全息通讯等领域有广泛应用。传统三维数字人制作往往费时耗力,近年来研究者提出基于三维生成对抗网络(3D GAN)从 2D 图像中学习三维数字人,极大提高了数字人制作效率。

这些方法往往在一维隐向量空间建模数字人,而一维隐向量无法表征人体的几何结构和语义信息,因此限制了其生成质量和编辑能力。

为了解决这一问题,来自新加坡南洋理工大学 S-Lab 团队提出结构化隐空间扩散模型(Structured Latent Diffusion Model)的三维数字人生成新范式 StructLDM。该范式包括三个关键设计:结构化的高维人体表征、结构化的自动解码器以及结构化的隐空间扩散模型。

StructLDM 是一个从图像、视频中学习的前馈三维生成模型(Feedforward 3D Generative Model),相比于已有 3D GAN 方法可生成高质量、多样化且视角一致的三维数字人,并支持不同层级的可控生成与编辑功能,如局部服装编辑、三维虚拟试衣等部位感知的编辑任务,且不依赖于特定的服装类型或遮罩条件,具有较高的适用性。

图片

  • 论文标题:StructLDM: Structured Latent Diffusion for 3D Human Generation

  • 论文地址:https://arxiv.org/pdf/2404.01241

  • 项目主页:https://taohuumd.github.io/projects/StructLDM

  • 实验室主页:https://www.ntu.edu.sg/s-lab

图片

,时长00:35

方法概览

图片

StructLDM 训练过程的包含两个阶段:

  • 结构化自动解码:给定人体姿态信息 SMPL 和相机参数,自动解码器对训练集中每个人物个体拟合出一个结构化 UV latent。该过程的难点在于如何把不同姿态、不同相机视角、不同着装的人物图像拟合到统一的 UV latent 中,为此 StructLDM 提出了结构化局部 NeRF 对身体每个部位分别建模,并通过全局风格混合器把身体各部分合并在一起,学习整体的人物外观。此外,为解决姿态估计误差问题,自动解码器训练过程中引入了对抗式学习。在这一阶段,自动解码器把训练集中每个人物个体转化为一系列 UV latent。

  • 结构扩散模型:该扩散模型学习第一阶段得到的 UV latent 空间,以此学习人体三维先验。

在推理阶段,StructLDM 可随机生成三维数字人:随机采样噪声并去噪得到 UV latent,该 latent 可被自动解码器渲染为人体图像。

实验结果

该研究在 4 个数据集上进行了实验评估:单视角图像数据集 DeepFashion [Liu et al. 2016],视频数据集 UBCFashion [Zablotskaia et al. 2019],真实三维人体数据集 THUman 2.0 [Yu et al. 2021], 及虚拟三维人体数据集 RenderPeople。

3.1 定性结果比较

StructLDM 在 UBCFashion 数据集上与已有 3D GAN 方法做了对比,如 EVA3D、 AG3D 及 StyleSDF。相比于已有方法,StructLDM 可生成高质量、多样化、视角一致的三维数字人,如不同肤色、不同发型,以及服饰细节(如高跟鞋)。

图片

StructLDM 在 RenderPeople 数据集上与已有 3D GAN 方法(如 EG3D, StyleSDF, 及 EVA3D)及扩散模型 PrimDiff 对比。相比于已有方法,StructLDM 可生成不同姿态、不同外观的高质量三维数字人,并生成高质量面部细节。

图片

,时长00:24

3.2 定量结果比较

研究者在 UBCFashion, RenderPeople,及 THUman 2.0 上与已知方法做了定量结果比较,在每个数据集上随机选取 5 万张图像计算 FID ,StructLDM 可大幅降低 FID。此外,User Study 显示大约 73% 的用户认为 StructLDM 生成的结果在面部细节和全身图像质量上比 AG3D 更有优势。

图片

3.3 应用

3.3.1 可控性生成

StructLDM 支持可控性生成,如相机视角、姿态、体型控制,以及三维虚拟试衣,并可在二维隐空间插值。

图片

3.3.2 组合式生成

StructLDM 支持组合式生成,如把①②③④⑤部分组合起来可生成新的数字人,并支持不同的编辑任务,如身份编辑、衣袖(4)、裙子(5)、三维虚拟试衣(6)以及全身风格化(7)。

图片

,时长00:25

3.3.3 编辑互联网图片

StructLDM 可对互联网图片进行编辑,首先通过 Inversion 技术得到对应的 UV latent,然后通过 UV latent 编辑可对生成的数字人进行编辑,如编辑鞋、上衣、裤子等。

图片

3.4 消融实验

3.4.1 隐空间扩散

StructLDM 提出的隐空间扩散模型可用于不同编辑任务,如组合式生成。下图探究了扩散模型参数(如扩散步数和噪声尺度)对生成结果的影响。StructLDM 可通过控制扩散模型参数来提高生成效果。

图片

3.4.2 一维与二维人体表征

研究者对比了一维与二维 latent 人体表征效果,发现二维 latent 可生成高频细节(如衣服纹理及面部表情),加入对抗式学习可同时提高图片质量和保真度。

图片

3.4.3 结构感知的归一化

为提高扩散模型学习效率,StructLDM 提出了结构感知的 latent 归一化技术 (structure-aligned normalization),即对每个 latent 做逐像素归一化。研究发现,归一化后的 latent 分布更接近于高斯分布,以此更利于扩散模型的学习。

图片

 

点击访问我的技术博客https://ai.weoknow.comicon-default.png?t=N7T8https://ai.weoknow.com

http://www.shuangfujiaoyu.com/news/46718.html

相关文章:

  • 做网站的像素是多少seo建站平台哪家好
  • 网站开发专业分数线互联网广告是做什么的
  • 用ai做网站国内新闻摘抄
  • 武汉企业网站排名优化网站开发
  • 做网站怎么接私活在线优化工具
  • 昆山网站建设第一品牌免费直链平台
  • 网站上社保做增员怎么做win7一键优化工具
  • 企业网站建设方案书目录石家庄网站建设案例
  • 用psd做的买书网站seo搜索引擎优化介绍
  • 网站建设一般的费用全国人大常委会副委员长
  • 做网站每年需付费吗app渠道推广
  • 做网站要多少像素新东方在线教育平台官网
  • 网上订货发货网站建设如何做个网站推广自己产品
  • php动态网站开发技术江苏免费关键词排名外包
  • 汕头网站推广百度提交入口网站网址
  • 建设网站的课题yandex网站推广
  • 天津网站制作公司脚上起小水泡还很痒是什么原因
  • 沛县互助网站开发seo网站推广工具
  • 郑州网站建设商城定制2024年新冠疫情最新消息
  • 如何注册电商网店中山seo
  • 宝塔怎么做两个网站seo搜索优化排名
  • 汕头选择免费网站优化网站开发培训
  • 建设信用卡在网站挂失块吗百度推广时间段在哪里设置
  • 企业网站备案信息查询下载百度 安装
  • 网站做的比较好的贸易公司手机优化大师哪个好
  • 浦东今天疫情详细名单搜索seo优化托管
  • 网站的要素是什么意思广州疫情已经达峰
  • 简单的英文网站源码国内搜索引擎排名第一的是
  • wordpress 纯代码seoseo机构
  • 爱写作网站360站长平台