当前位置: 首页 > news >正文

网站备案 停站哪家公司建设网站好

网站备案 停站,哪家公司建设网站好,网页制作模块素材,新媒体公司网站怎么做这篇文章我们来看一下数据结构中的二叉搜索树。 目录 1.概述 2.二叉搜索树的实现 3.总结 1.概述 我们前面学到的数据结构,比如:动态数组、链表、队列、栈、堆,这些数据结构存储完数据后,我们要去查找某个数据,它的…

这篇文章我们来看一下数据结构中的二叉搜索树。

目录

1.概述

2.二叉搜索树的实现

3.总结


1.概述

我们前面学到的数据结构,比如:动态数组、链表、队列、栈、堆,这些数据结构存储完数据后,我们要去查找某个数据,它的时间复杂度是O(n),因为这些数据结构的底层实现都是数组或者链表,都是线性的。我们前面有学过二分查找,它的最优时间复杂度为O(lngn)。下面,我们来学习另外一种便于查找的数据结构——二叉搜索树

二叉搜索树:又被称为二叉查找树。其特点如下:

  • 树节点上增加key属性,用来比较谁大谁小,key不可以重复
  • 对于任意一个树节点,它的key比它的左子树的key都大,比它的右子树的key都小

下面看一张图:

二叉搜索树的理想查找时间复杂度为O(logn)

2.二叉搜索树的实现

下面来看一下二叉搜索树的实现:

二叉搜索树的根据key值找节点值,找最大,找最小,找前驱和后继都是比较简单的,思路都是很好理解的。

下面重点来讲一下删除的思路(删除的情况很多):

  1. 删除节点没有左孩子,将右孩子托孤给Parent
  2. 删除节点没有右孩子,将左孩于托孤给Parent
  3. 删除节点左右孩子都没有,已经被涵盖在情况1、情况2当中,把null 托孤给Parent
  4. 删除节点左右孩子都有,可以将它的后继节点(称为S)托孤给Parent,再称S的父亲为SP,又分两种情况:(1)SP就是被删除节点,此时D与S紧邻,只需将S托孤给Parent (2)SP不是被删除节点,此时D与S不相邻,此时需要将S的后代托孤给SP,再将S托孤给Parent

下面来看一下代码的具体实现(代码太长,就不截图展示了):

package Tree;import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;/**二叉搜索树*/
public class L2_BSTree1<T extends Comparable<T>> {/**节点类*/static class BSTNode<T>{T key;Object value;BSTNode left;BSTNode right;public BSTNode(T key) {this.key = key;}public BSTNode(T key, Object value) {this.key = key;this.value = value;}public BSTNode(T key, Object value, BSTNode left, BSTNode right) {this.key = key;this.value = value;this.left = left;this.right = right;}}BSTNode<T> root;//根节点/**根据key值得到节点的值*/public Object get(T key){BSTNode<T> node = root;while (node!=null){/*** 该值比传入参数大,返回1* 该值比传入参数小,返回-1* 该值等于传入参数,返回0* */int result = key.compareTo(node.key);if (result < 0){node = node.left;}else if (result > 0){node = node.right;}else {return node.value;}}return null;}public Object get1(T key){return doGet(root,key);}private Object doGet(BSTNode<T> node, T key){//递归的函数int result = key.compareTo(node.key);if (node == null){return null;}if (result < 0){return doGet(node.left,key);//向左找}else if (result > 0){return doGet(node.right,key);//向左找}else{return node.value;//返回当前的值}}/**得到最小key值所对应的值*/public Object min(){//非递归版return max(root);}public Object min(BSTNode node){//非递归版if (node == null){return null;}BSTNode pre = node;while (pre.left != null){pre = pre.left;}return pre.value;}public Object min1(){//递归版return doMin(root);}private Object doMin(BSTNode node){if (node == null){return null;}if (node.left == null){return node.value;}return doMin(node.left);}/**得到最大key值所对应的值*/public Object max(){//非递归版return max(root);}private Object max(BSTNode<T> node){if (node == null){return null;}BSTNode pre = node;while (pre.right != null){pre = pre.right;}return pre.value;}public Object max1(){//递归版return doMax(root);}private Object doMax(BSTNode node){if (node == null){return null;}if (node.right == null){return node.value;}return doMin(node.right);}/**存储key值和节点值*/public void put(T key,Object value){//1.如果key存在,更新操作//1.如果key不存在,新增操作BSTNode<T> node = root;BSTNode<T> parent = null;//记录key的前一个值while (node != null){parent = node;int result = key.compareTo(node.key);if (result < 0){node = node.left;}else if (result > 0){node = node.right;}else {//找到了node.value = value;return;}}//没找到,新增if (parent == null){root = new BSTNode<T>(key,value);}int result = key.compareTo(parent.key);if (result < 0){parent.left = new BSTNode<T>(key,value);}else if(result > 0){parent.right = new BSTNode<T>(key,value);}}/**找到某一个key的前驱值*/public Object predecessor(T key){BSTNode<T> p = root;BSTNode<T> ancestorFromLeft = null;while (p != null){int result = key.compareTo(p.key);if (result < 0){p = p.left;}else if (result > 0){ancestorFromLeft = p;p = p.right;}else {break;}}if (p == null){//没找到节点的情况return null;}if (p.left != null){//找到节点,有左子树return max(p.left);}return ancestorFromLeft != null ?ancestorFromLeft.value :null;}/**找到某一个key的后继值*/public Object successor(T key){BSTNode<T> p = root;BSTNode<T> ancestorFromRight = null;while (p != null){int result = key.compareTo(p.key);if (result < 0){ancestorFromRight = p;p = p.left;}else if (result > 0){p = p.right;}else {break;}}if (p == null){//没找到节点的情况return null;}if (p.right != null){//找到节点,有左子树return min(p.right);}return ancestorFromRight != null ?ancestorFromRight.value :null;}/**根据key值删除对应的节点*/public Object delete(T key){BSTNode<T> p = root;BSTNode<T> parent = null;while (p != null){int result = key.compareTo(p.key);if (result < 0){parent = p;//记录当前节点的父节点p = p.left;}else if (result > 0){parent = p;p = p.right;}else {break;}}if (p == null){return null;}//删除操作if (p.left == null ){//情况1shift(parent,p,p.right);} else if(p.right == null ){//情况2shift(parent,p,p.left);} else {//情况4BSTNode<T> s = p.right;BSTNode<T> sParent = p;//后继结点的父亲while (s.left != null){sParent = s;s = s.left;}if (sParent != p){//不相邻shift(sParent,s,s.right);s.right = p.right;}shift(parent ,p,s);s.left = p.left;}return p.value;}/*** 托孤方法* parent:被删除节点的父亲* deleted:被删除节点* child:被上去的结点* */private void shift(BSTNode<T> parent,BSTNode<T> deleted,BSTNode<T> child){if (parent == null){root = child;} else if (deleted == parent.left){parent.left = child;}else {parent.right = child;}}public Object delete1(T key){ArrayList<Object> Aresult = new ArrayList<>();//保存被删除节点的值root = doDelete(root,key,Aresult);return Aresult.isEmpty()? null:Aresult.get(0);}private BSTNode<T> doDelete(BSTNode<T> node,T key,ArrayList<Object> Aresult){//node:递归删除的起点//返回值:删剩下的孩子节点if (node == null){return null;}int result = key.compareTo(node.key);if (result < 0){node.left = doDelete(node.left,key,Aresult);return node;}if (result > 0){node.right = doDelete(node.right,key,Aresult);return node;}Aresult.add(node.value);if (node.left == null){return node.right;}if(node.right == null){return node.left;}BSTNode<T> s = node.right;while (s.left != null){s = s.left;}s.right = doDelete(node.right,s.key,new ArrayList<>());s.left = node.left;return s;}/*找比指定key小的所有节点的value值*/public List<Object> less(T key){ArrayList<Object> list = new ArrayList<>();BSTNode<T> p = root;LinkedList<BSTNode<T>> stack = new LinkedList<>();while (p != null || !stack.isEmpty()){if (p != null){stack.push(p);p = p.left;}else {BSTNode<T> pop = stack.pop();int result = key.compareTo( pop.key);if (result < 0 ){list.add(pop.value);} else {break;}p = pop.right;}}return list;}/*找比指定key小的所有节点的value值*/public List<Object> greater(T key){ArrayList<Object> list = new ArrayList<>();BSTNode<T> p = root;LinkedList<BSTNode<T>> stack = new LinkedList<>();while (p != null || !stack.isEmpty()){if (p != null){stack.push(p);p = p.left;}else {BSTNode<T> pop = stack.pop();int result = key.compareTo( pop.key);if (result > 0 ){list.add(pop.value);}p = pop.right;}}return list;}/*找比指定key小的所有节点的value值*/public List<Object> between(T key1,T key2){ArrayList<Object> list = new ArrayList<>();BSTNode<T> p = root;LinkedList<BSTNode<T>> stack = new LinkedList<>();while (p != null || !stack.isEmpty()){if (p != null){stack.push(p);p = p.left;}else {BSTNode<T> pop = stack.pop();int result1 = key1.compareTo( pop.key);int result2 = key2.compareTo( pop.key);if (result1 > 0 && result2 < 0){list.add(pop.value);}else if (result2 > 0){break;}p = pop.right;}}return list;}}

3.总结

怎么说呢,二叉搜索树对比前面的二叉树来说,难度确实是上了一个档次。但是,越学数据结构与算法你越会有这样一种感觉:他们的套路都大差不差!二叉搜索树是用链表来实现的,只要心中有图,多画画图,然后熟悉链表的一些操作,熟悉一些循环流程的判断,那么那些操作都能实现出来。如果实现不了,那就再多结合其他的数据结构来想一想。链表的操作主要就是看一些循环流程的控制。其余的没啥难的。对于数组,数组的一些操作要比链表难,因为数组太死了。

我之前的代码的注释比较多,因为刚接触,不熟悉,但现在代码中的注释并不多,那是因为一些操作都写了很多遍了。虽然不至于能默写下来,但是可以自己推导着写出来。思路有了,也练了几遍手,那么再遇见这个问题自己就能推导了。所以数据结构与算法学到后面主要就是学思路了。

http://www.shuangfujiaoyu.com/news/45684.html

相关文章:

  • 建设一个网站项目预算企业培训机构有哪些
  • 常州网站建设解决方案英文网站设计公司
  • 网站数据库连接不上的常见问题浏览器2345网址导航下载安装
  • 网站建设 策划方案书十大基本营销方式
  • 网站注册哪个好网络营销公司有哪些
  • 织梦网站做自适应最新足球赛事
  • 用ftp改网站电话怎么内页底部的没有变软文推广文案范文
  • 网站建设哪家强2022最近的新闻大事10条
  • 做特产的网站无锡百度竞价公司
  • 做网站完整视频seo网站是什么意思
  • 代刷网网站怎么做沈阳cms模板建站
  • 国外版抖音tiktokseo属于什么职位类型
  • 如何设置网站logoseo排名优化服务
  • 服务器网站部署百度百科优化排名
  • 衡水企业做网站2023年度最火关键词
  • 网站开发编写籍贯代码网站友链
  • 网站建设 制作教程 pdfseo营销推广
  • 用dw做简单图片网站大数据营销成功案例
  • wordpress开户多站点百度付费问答平台
  • 成都住建局官网租房seo教学平台
  • 网站报错403郑州seo价格
  • 腾讯云服务器网站域名备案自己建立网站步骤
  • 小程序开发工具代理平台网络优化的三个方法
  • 松江泖港网站建设seo标签怎么优化
  • 身份证被用户做网站备案优化器
  • html5 单页网站网球排名即时最新排名
  • 网站seo推广怎么做网站首页面设计
  • 厦门网站建设公司哪家好海南百度推广开户
  • 广州推广型网站建设每日一则小新闻
  • 网站建设到运营赚钱seo关键词排名教程