当前位置: 首页 > news >正文

app downloadseo常用的优化工具

app download,seo常用的优化工具,温州市网站建设,上海做外贸网站动手学深度学习:2.线性回归pytorch实现 1.手动构造数据集2.小批量读取数据集3.定义模型和损失函数4.初始化模型参数5.小批量随机梯度下降优化算法6.训练完整代码Q&A 1.手动构造数据集 import torch from torch.utils import data from d2l import torch as d2l…

动手学深度学习:2.线性回归pytorch实现

    • 1.手动构造数据集
    • 2.小批量读取数据集
    • 3.定义模型和损失函数
    • 4.初始化模型参数
    • 5.小批量随机梯度下降优化算法
    • 6.训练
    • 完整代码
    • Q&A


1.手动构造数据集

import torch
from torch.utils import data
from d2l import torch as d2ltrue_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

使用 d2l.torch.synthetic_data() 函数生成 y = X w + b + n o i s e y = Xw + b + noise y=Xw+b+noise 数据集。

2.小批量读取数据集

可以调用框架中现有的API来读取数据。 我们将featureslabels作为API的参数传递,并通过数据迭代器指定batch_size

布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据。

def load_array(data_arrays, batch_size, is_train=True): """构造一个PyTorch数据迭代器"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)batch_size = 10
data_iter = load_array((features, labels), batch_size)

构造的 data_iter 数据迭代器使用方法,同 线性回归从0开始实现 中的使用相同。

为了验证是否正常工作,让我们读取并打印第一个小批量样本:这里我们使用iter构造Python迭代器,并使用next从迭代器中获取第一项

next(iter(data_iter))
'''
[tensor([[ 0.5050, -1.7171],[ 0.8045, -1.2517],[-0.4567,  0.2793],[-0.8896, -0.4969],[ 1.6303,  0.1123],[ 2.5058, -0.0823],[-0.3293, -1.2887],[-0.9669, -1.8388],[-0.1570, -0.6264],[ 1.0302,  1.2225]]), 
tensor([[11.0521],[10.0705],[ 2.3309],[ 4.1006],[ 7.0623],[ 9.4687],[ 7.9316],[ 8.5144],[ 6.0212],[ 2.1108]])]
'''

3.定义模型和损失函数

对于标准深度学习模型,我们可以使用框架的预定义好的层。这使我们只需关注使用哪些层来构造模型,而不必关注层的实现细节。

我们首先定义一个模型变量net,它是一个Sequential类的实例。 Sequential类将多个层串联在一起。 当给定输入数据时,Sequential实例将数据传入到第一层, 然后将第一层的输出作为第二层的输入,以此类推。

在下面的例子中,我们的模型只包含一个层,因此实际上不需要Sequential。 但是由于以后几乎所有的模型都是多层的,在这里使用Sequential会让你熟悉“标准的流水线”。

全连接层 fully-connected layer ,在PyTorch中,全连接层在Linear类中定义。

我们将两个参数传递到nn.Linear中。 第一个指定输入特征形状,即2,第二个指定输出特征形状,输出特征形状为单个标量,因此为1。

from torch import nnnet = nn.Sequential(nn.Linear(2, 1))

计算均方误差使用的是MSELoss类,也称为平方 L 2 L_2 L2 范数。 默认情况下,它返回所有样本损失的平均值。

loss = nn.MSELoss()

4.初始化模型参数

在使用net之前,我们需要初始化模型参数。 如在线性回归模型中的权重和偏置。 深度学习框架通常有预定义的方法来初始化参数。 在这里,我们指定每个权重参数应该从均值为0、标准差为0.01的正态分布中随机采样, 偏置参数将初始化为零。

正如我们在构造nn.Linear时指定输入和输出尺寸一样, 现在我们能直接访问参数以设定它们的初始值。我们通过net[0]选择网络中的第一个图层, 然后使用weight.databias.data方法访问参数。 我们还可以使用替换方法normal_fill_来重写参数值。

net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

5.小批量随机梯度下降优化算法

小批量随机梯度下降算法是一种优化神经网络的标准工具, PyTorch在optim模块中实现了该算法的许多变种。

当我们实例化一个SGD实例时,我们要指定优化的参数 (可通过net.parameters()从我们的模型中获得)以及优化算法所需的超参数字典。 小批量随机梯度下降只需要设置lr值,这里设置为0.03。

trainer = torch.optim.SGD(net.parameters(), lr=0.03)

可以参考 线性回归从0开始实现 中的 sgd 函数的实现。

6.训练

在每个迭代周期里,我们将完整遍历一次数据集(train_data), 不停地从中获取一个小批量的输入和相应的标签。 对于每一个小批量,我们会进行以下步骤:

  • 通过调用net(X)生成预测并计算损失l(前向传播)。
  • 通过进行反向传播来计算梯度。
  • 通过调用优化器来更新模型参数。
num_epochs = 3
for epoch in range(num_epochs):for X, y in data_iter:l = loss(net(X) ,y)trainer.zero_grad() # 在默认情况下,PyTorch会累积梯度,我们需要清除之前的值l.backward()trainer.step()l = loss(net(features), labels)print(f'epoch {epoch + 1}, loss {l:f}')'''
epoch 1, loss 0.000354
epoch 2, loss 0.000104
epoch 3, loss 0.000104
'''

下面我们比较生成数据集的真实参数和通过有限数据训练获得的模型参数。要访问参数,我们首先从net访问所需的层,然后读取该层的权重和偏置。

w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)'''
w的估计误差: tensor([-8.0824e-05,  4.2796e-04])
b的估计误差: tensor([-0.0006])
'''

完整代码

import torch
from torch.utils import data
from d2l import torch as d2l
from torch import nntrue_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)def load_array(data_arrays, batch_size, is_train=True):"""构造一个PyTorch数据迭代器"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)batch_size = 10
data_iter = load_array((features, labels), batch_size)
print(next(iter(data_iter)))net = nn.Sequential(nn.Linear(2, 1))
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)loss = nn.MSELoss(reduction='sum')
trainer = torch.optim.SGD(net.parameters(), lr=0.03 / batch_size)num_epochs = 3
for epoch in range(num_epochs):for X, y in data_iter:l = loss(net(X), y)trainer.zero_grad()l.backward()trainer.step()l = loss(net(features), labels)print(f'epoch {epoch + 1}, loss {l:f}')w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)

Q&A

如果将小批量的总损失替换为小批量损失的平均值,需要如何更改学习率?

如果我们用 nn.MSELoss(reduction=‘sum’) 替换 nn.MSELoss() 为了使代码的行为相同,需要怎么更改学习速率?为什么?

查看损失函数 nn.MSELoss 定义可知,损失默认为 mean

def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:super().__init__(size_average, reduce, reduction)

当使用 nn.MSELoss(reduction=‘sum’) 时,要把学习率除以batch_size才能达到 nn.MSELoss() 同样的效果。因为在求导过程中,常数项作为系数保持不变,梯度的大小也乘上了batch_size。

loss = nn.MSELoss(reduction='sum')trainer = torch.optim.SGD(net.parameters(), lr=0.03/batch_size) 

修改前的运行效果:

epoch 1, loss 0.000354
epoch 2, loss 0.000104
epoch 3, loss 0.000104
w的估计误差: tensor([-8.0824e-05,  4.2796e-04])
b的估计误差: tensor([-0.0006])

修改以后运行效果:

epoch 1, loss 0.220722
epoch 2, loss 0.110026
epoch 3, loss 0.109946
w的估计误差: tensor([0.0008, 0.0002])
b的估计误差: tensor([9.3937e-05])
http://www.shuangfujiaoyu.com/news/42789.html

相关文章:

  • 企业管理培训课程目录徐州自动seo
  • 怎么上网站做简易注销的步骤网站快速收录付费入口
  • 网站规划建设与推广百度收录的网站多久更新一次
  • 日本网页设计网站2022年最火的新闻摘抄
  • 上海奉贤区政府seo从0到1怎么做
  • 网站建设公司潍坊网络营销推广的5种方法
  • 福州网站建设百度官方人工客服电话
  • 番禺做网站报价网络营销的10个特点
  • 网站优化公司哪家便宜网络营销的发展趋势
  • wordpress大前端d8主题免费下载武汉seo推广优化公司
  • 各网站网络营销产品价格策略seo外包公司优化
  • 微信小程序开发教程2021旺道seo推广有用吗
  • 管理网站怎么做的优化设计三要素
  • 网站诊断分析优化网络搜索引擎
  • 可以做视频的网站营销策略国内外文献综述
  • 秦皇岛网站制作代理商做网络推广的网站有哪些
  • 腾讯云做网站干什么用山东百搜科技有限公司
  • 成都建网站seo网站优化快速排名软件
  • 企业网站功能报价公司网络推广方法
  • 公司的网站推广费怎么做分录长沙企业网站建设报价
  • 质量好网站建设商家官网首页入口百度
  • 北京大学网站开发的需求分析chatgpt 网站
  • 网站服务器租用多少钱一年合适百度排名点击软件
  • 学网站建设与管理好吗seo网站推广批发
  • 企业开源建站系统大学生网络营销策划书
  • 建设银行网站打不开其他网站可以用吗外链发布平台有哪些
  • 阿里云企业网站怎么收费深圳优化怎么做搜索
  • 做宠物网站还有前景嘛百度竞价怎么做开户需要多少钱
  • 新手学做网站要花钱么百度识图搜索图片来源
  • 成都专业做婚恋网站的网络科技公司衡阳seo