政府网站和政务新媒体建设管理办法优搜云seo
动态规划
文章目录
- 动态规划
- 一、背包问题
- 一、01背包
- 二、完全背包问题
- 三、多重背包问题
- 四、分组背包问题
一、背包问题
一、01背包
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
(1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值(2)不选第i个:F[i−1][j](3)选第i个:F[i−1][j−v[i]]+w[i](4)F[i][j]=max(F[i−1][j],F[i−1][j−v[i]]+w[i])\begin{align} &(1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值\\ &(2)不选第i个:F[i-1][j]\\ &(3)选第i个 :F[i-1][j-v[i]]+w[i]\\ &(4)F[i][j]=max(F[i-1][j],F[i-1][j-v[i]]+w[i]) \end{align} (1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值(2)不选第i个:F[i−1][j](3)选第i个:F[i−1][j−v[i]]+w[i](4)F[i][j]=max(F[i−1][j],F[i−1][j−v[i]]+w[i])
优化前:
memset(f,0,sizeof f);for(int i=1;i<=n;i++)for(int j=0;j<=m;j++){f[i][j]=f[i-1][j]; //不选if(j>=v[i]) f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]); //选}cout<<f[n][m]<<endl;
优化后:(每次只会用到上一层的状态)
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1010;
int n,m;
int f[N];
int v[N],w[N];
int main()
{cin>>n>>m;for(int i=1;i<=n;i++)cin>>v[i]>>w[i];memset(f,0,sizeof f);for(int i=1;i<=n;i++)for(int j=m;j>=v[i];j--){f[j]=max(f[j],f[j-v[i]]+w[i]); //选}cout<<f[m]<<endl;return 0;}
二、完全背包问题
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
(1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值(2)选k(k>=0)个物品i:F[i−1][j−k∗v[i]]+K∗w[i]\begin{align} &(1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值\\ &(2)选k(k>=0)个物品i:F[i-1][j-k*v[i]]+K*w[i]\\ \end{align} (1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值(2)选k(k>=0)个物品i:F[i−1][j−k∗v[i]]+K∗w[i]
优化前:
for(int i = 1 ; i<=n ;i++)for(int j = 0 ; j<=m ;j++){for(int k = 0 ; k*v[i]<=j ; k++)f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);}
优化:
f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w , f[i-1,j-2*v]+2*w , f[i-1,j-3*v]+3*w , .....)
f[i , j-v]= max( f[i-1,j-v] , f[i-1,j-2*v] + w , f[i-1,j-3*v]+2*w , .....)
由上两式,可得出如下递推关系: f[i][j]=max(f[i,j-v]+w , f[i-1][j])
for(int i = 1 ; i <= n ; i++)
for(int j = 0 ; j <= m ; j ++)
{f[i][j] = f[i-1][j];if(j-v[i]>=0)f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
优化变一维:
for(int i = 1 ; i<=n ;i++)for(int j = v[i] ; j<=m ;j++)//注意了,这里的j是从小到大枚举,和01背包不一样{f[j] = max(f[j],f[j-v[i]]+w[i]);}
三、多重背包问题
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
思路1:参考完全背包
int n,m;
int v[N],w[N],s[N];
int f[N][N];int main()
{cin>>n>>m;for(int i=1;i<=n;i++) cin>>v[i]>>w[i]>>s[i];for(int i=1;i<=n;i++)for(int j=0;j<=m;j++)for(int k=0;k<=s[i]&&k*v[i]<=j;k++)f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);cout<<f[n][m]<<endl;return 0;
}
思路2**:二进制优化将n种物品,每种Si个的多重背包,拆分打包看成N件物品(组)的01背包问题**
(1)例如当s[i]=7时(2)将其拆分为:1,2,4的三组,就可以凑出0−7中的任意数(3)s[i]=9时:1,2,4,2就可以凑出0−7中的任意数\begin{align} &(1)例如当s[i]=7时\\ &(2)将其拆分为:1,2,4的三组,就可以凑出0-7中的任意数\\ &(3)s[i]=9时:1,2,4,2就可以凑出0-7中的任意数 \end{align} (1)例如当s[i]=7时(2)将其拆分为:1,2,4的三组,就可以凑出0−7中的任意数(3)s[i]=9时:1,2,4,2就可以凑出0−7中的任意数
#include<iostream>using namespace std;const int M=12000;int n,m;
int f[M],v[M],w[M];
int main()
{cin>>n>>m;int cnt=0;while(n--){int a,b,c;cin>>a>>b>>c;int t=1;while(c>=t){v[++cnt]=a*t;w[ cnt]=b*t;c-=t;t=t*2;}if(c) {v[++cnt]=a*c; w[cnt]=b*c;}}n=cnt;//转化为了01背包for(int i=1;i<=n;i++)for(int j=m;j>=v[i];j--)f[j]=max(f[j],f[j-v[i]]+w[i]);cout<<f[m]<<endl;return 0;
}
四、分组背包问题
有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
(1)F[i,j]:只在前i组里选,且总体积不超过j的最大价值(2)不选:F[i−1][j](3)选i组的第k个:F[i−1][j−v[i][k]]+w[i][k]\begin{align} &(1)F[i,j]:只在前i组里选,且总体积不超过j的最大价值\\ &(2)不选:F[i-1][j]\\ &(3)选i组的第k个:F[i-1][j-v[i][k]]+w[i][k] \end{align} (1)F[i,j]:只在前i组里选,且总体积不超过j的最大价值(2)不选:F[i−1][j](3)选i组的第k个:F[i−1][j−v[i][k]]+w[i][k]
#include<iostream>
using namespace std;
const int N=110;
int n,m;
int s[N],v[N][N],w[N][N];
int f[N][N];
int main()
{cin>>n>>m;for(int i=1;i<=n;i++){cin>>s[i];for(int j=0;j<s[i];j++)cin>>v[i][j]>>w[i][j];}for(int i=1;i<=n;i++)for(int j=0;j<=m;j++){f[i][j]=f[i-1][j]; //不选for(int k=0;k<s[i];k++){if(j>=v[i][k]) f[i][j]=max(f[i][j],f[i-1][j-v[i][k]]+w[i][k]); //选第k个}}cout<<f[n][m]<<endl;return 0;
}