当前位置: 首页 > news >正文

国内做网站的公司中国国家人事人才培训网

国内做网站的公司,中国国家人事人才培训网,最新版wordpress背景,河南为什么疫情突然严重了文章目录 1. 相似矩阵1.1 A T A A^TA ATA正定性证明 2. 相似矩阵2.1 举例2.2 证明相似矩阵具有相同特征值 1. 相似矩阵 假设矩阵A,B为正定矩阵,那么对于任意非零列向量x来说,二次型 x T A x , x T B x x^TAx,x^TBx xTAx,xTBx恒为正 x T A …

文章目录

1. 相似矩阵

假设矩阵A,B为正定矩阵,那么对于任意非零列向量x来说,二次型 x T A x , x T B x x^TAx,x^TBx xTAx,xTBx恒为正
x T A x > 0 , x T B x > 0 , \begin{equation} x^TAx>0,x^TBx>0, \end{equation} xTAx>0xTBx>0

  • 如果A,B均是正定矩阵,那么A+B也是正定矩阵
    x T ( A + B ) x = ( x T A + x T B ) x = x T A x + x T B x > 0 \begin{equation} x^T(A+B)x=(x^TA+x^TB)x=x^TAx+x^TBx>0 \end{equation} xT(A+B)x=(xTA+xTB)x=xTAx+xTBx>0
    我们在做最小二乘法的过程中,需要拟合一条直线,满足直线基本能反映点的情况,我们知道b值不一定在A的列空间中,所以我们通过同时乘以 A T A^T AT 得到 A T b A^Tb ATb,使得方程能求得最优解 x ^ \hat{x} x^
    A T A x ^ = A T b \begin{equation} A^TA\hat{x}=A^Tb \end{equation} ATAx^=ATb
    这时候我们就遇到了 A T A A^TA ATA矩阵,那么这个矩阵肯定是对称矩阵,请问 A T A A^TA ATA 是否是正定矩阵呢?

1.1 A T A A^TA ATA正定性证明

首先 A T A A^TA ATA是对称的,那么我们只需要证明对于任意非零向量x,二次型恒正即可:
x T A T A x > ? ? ? 0 \begin{equation} x^TA^TAx>???0 \end{equation} xTATAx>???0

  • 整理上述公式可得:
    ( x T A T ) ( A x ) = ( A x ) T ( A x ) \begin{equation} (x^TA^T)(Ax)=(Ax)^T(Ax) \end{equation} (xTAT)(Ax)=(Ax)T(Ax)
  • 我们知道Ax表示的是A列向量的组合,最后还是一个列向量,所以上述值都是一个标量的平方,所以可以得到如下:
    ( x T A T ) ( A x ) = ( A x ) T ( A x ) = ∣ ∣ A x ∣ ∣ 2 ≥ 0 \begin{equation} (x^TA^T)(Ax)=(Ax)^T(Ax)=||Ax||^2 \ge 0 \end{equation} (xTAT)(Ax)=(Ax)T(Ax)=∣∣Ax20
  • 那么什么时候 ∣ ∣ A x ∣ ∣ ≠ 0 ||Ax|| \neq0 ∣∣Ax∣∣=0呢?也就是当Ax=0无零解,也就是说矩阵A的秩等于列数n,所以可以得到,只要给定一个m行n列的矩阵A,如果矩阵A的秩为n,即满列秩,那么就可以得到 A T A A^TA ATA为正定矩阵!!!

2. 相似矩阵

假设A,B均是N×N的矩阵,如果存在一个可以矩阵M,使得三个矩阵满足如下关系,那么A相似于B
B = M − 1 A M \begin{equation} B=M^{-1}AM \end{equation} B=M1AM
特征向量矩阵S,当我们有一个矩阵A,其特征值矩阵为 Λ \Lambda Λ,特征向量矩阵为S,满足如下条件:
Λ = S − 1 A S ⇒ A ∼ Λ \begin{equation} \Lambda=S^{-1}AS \Rightarrow A \sim \Lambda \end{equation} Λ=S1ASAΛ

  • 按照新的说法来说,矩阵A相似于特征向量 Λ \Lambda Λ,也就是说当矩阵M是特征向量矩阵S时候,矩阵A相似于特征值矩阵 Λ \Lambda Λ,如果 M ≠ S M \ne S M=S,那么矩阵A相似于其他的。
    B = M − 1 A M ⇒ { A ∼ Λ , M = S A ∼ B , M ≠ S \begin{equation} B=M^{-1}AM \Rightarrow \left\{ \begin{aligned} A \sim \Lambda,M=S\\ A \sim B,M\neq S\\ \end{aligned} \right.\end{equation} B=M1AM{AΛM=SABM=S

2.1 举例

当我们矩阵A表示如下,可以得到其特征向量矩阵S,特征值矩阵 Λ \Lambda Λ
A = [ 2 1 1 2 ] ⇒ S = [ 1 1 − 1 1 ] , Λ = [ 1 0 0 3 ] ⇒ A ∼ Λ \begin{equation} A=\begin{bmatrix} 2&1\\\\ 1&2 \end{bmatrix}\Rightarrow S=\begin{bmatrix} 1&1\\\\ -1&1 \end{bmatrix},\Lambda=\begin{bmatrix} 1&0\\\\ 0&3 \end{bmatrix}\Rightarrow A \sim \Lambda \end{equation} A= 2112 S= 1111 ,Λ= 1003 AΛ

  • 给定一个矩阵M,可得如下B
    A = [ 2 1 1 2 ] ⇒ M = [ 1 4 0 1 ] , B = M − 1 A M = [ − 2 − 15 1 6 ] ⇒ A ∼ B \begin{equation} A=\begin{bmatrix} 2&1\\\\ 1&2 \end{bmatrix}\Rightarrow M=\begin{bmatrix} 1&4\\\\ 0&1 \end{bmatrix},B=M^{-1}AM=\begin{bmatrix} -2&-15\\\\ 1&6 \end{bmatrix}\Rightarrow A \sim B \end{equation} A= 2112 M= 1041 ,B=M1AM= 21156 AB
  • 矩阵A,B, Λ \Lambda Λ之间有什么关系呢?
    ∣ ∣ A ∣ ∣ = 3 , λ A 1 = 1 ; λ A 2 = 3 ; t r a c e A = 4 \begin{equation} ||A||=3,\lambda_{A1}=1;\lambda_{A2}=3;trace_A=4 \end{equation} ∣∣A∣∣=3,λA1=1λA2=3;traceA=4
    ∣ ∣ B ∣ ∣ = 3 , λ B 1 = 1 ; λ B 2 = 3 ; t r a c e B = 4 \begin{equation} ||B||=3,\lambda_{B1}=1;\lambda_{B2}=3;trace_B=4 \end{equation} ∣∣B∣∣=3,λB1=1λB2=3;traceB=4

1、两者的秩相等。 2、两者的行列式值相等。 3、两者的迹数相等。 4、两者拥有同样的特征值,尽管相应的特征向量一般不同

2.2 证明相似矩阵具有相同特征值

B = M − 1 A M , A x = λ x \begin{equation} B=M^{-1}AM,Ax=\lambda x \end{equation} B=M1AM,Ax=λx

M B M − 1 = A ⇒ M B M − 1 x = A x = λ x ⇒ B [ M − 1 x ] = λ [ M − 1 x ] \begin{equation} MBM^{-1}=A\Rightarrow MBM^{-1}x=Ax=\lambda x \Rightarrow B[M^{-1}x]=\lambda [M^{-1}x] \end{equation} MBM1=AMBM1x=Ax=λxB[M1x]=λ[M1x]

  • 故可以得到,如果矩阵A相似于矩阵B,那么A,B具有相同的特征值矩阵。
http://www.shuangfujiaoyu.com/news/37609.html

相关文章:

  • 南京网站制作学校dw友情链接怎么设置
  • 怎么做淘宝返利网站百度小说排行榜2020
  • 网站建设明细表泰州seo外包公司
  • 网站建设销售培训营销推广方案包括哪些内容
  • wordpress覆盖密码重置海外网站seo优化
  • 创建网站大约多少钱网站推广的方法和途径
  • 公司做网站哪个好郑州网络推广团队
  • 免费推广店铺的网站灰色seo推广
  • 信息推广网站点不开的那种怎么做新闻网最新消息
  • 海南海口网站建设台州网站建设推广
  • 佛山网站优化方法软件上海百度搜索排名优化
  • 做网站建设的网站石家庄最新疫情
  • 做视频网站的条件哪里有学计算机培训班
  • 郑州网站建设电话如何推广自己的业务
  • 网站建设行业新闻免费引流推广
  • 一个企业是如何做网站建设的重庆seo职位
  • 一个企业可以备案几个网站seo发外链的网站
  • 美国做礼品的网站seo图片优化的方法
  • 建站网站排行榜网站建设详细方案
  • 网站运营新手做最好的推广平台是什么软件
  • html网站模板建站软文云
  • 东阿聊城做网站的公司东莞专业网站推广工具
  • 中英文网站 程序网站服务器搭建
  • 用网盘做网站小说关键词自动生成器
  • 关于建设人才网站的竞争对手分析seo入门黑帽培训教程
  • yourphp企业网站管理系统站内推广方式有哪些
  • 广东东莞虎门最新疫情seo优化网站源码
  • qq空间做网站百度热搜榜小说排名
  • 邯郸网站开发公司女教师遭网课入侵视频
  • 网站解析怎么做seo优化关键词0