当前位置: 首页 > news >正文

建设银行山西招聘网站鲜花网络营销推广方案

建设银行山西招聘网站,鲜花网络营销推广方案,中国专业摄影网,网络营销和电子商务区别记录使用pytorch构建网络模型过程遇到的点 1. 网络模型构建中的问题 1.1 输入变量是Tensor张量 各个模块和网络模型的输入, 一定要是tensor 张量; 可以用一个列表存放多个张量。 如果是张量维度不够,需要升维度, 可以先使用 …

记录使用pytorch构建网络模型过程遇到的点

1. 网络模型构建中的问题

1.1 输入变量是Tensor张量

各个模块和网络模型的输入, 一定要是tensor 张量;

可以用一个列表存放多个张量。
如果是张量维度不够,需要升维度,
可以先使用 torch.unsqueeze(dim = expected)
然后再使用torch.cat(dim ) 进行拼接;

  • 需要传递梯度的数据,禁止使用numpy, 也禁止先使用numpy,然后再转换成张量的这种情况出现;

这是因为pytorch的机制是只有是 Tensor 张量的类型,才会有梯度等属性值,如果是numpy这些类别,这些变量并会丢失其梯度值。

1.2 __init__() 方法使用

class ex:def __init__(self):pass

__init__方法必须接受至少一个参数即self,

Python中,self是指向该对象本身的一个引用

通过在类的内部使用self变量,

类中的方法可以访问自己的成员变量,简单来说,self.varname的意义为”访问该对象的varname属性“

当然,__init__()中可以封装任意的程序逻辑,这是允许的,init()方法还接受任意多个其他参数,允许在初始化时提供一些数据,例如,对于刚刚的worker类,可以这样写:

class worker:def __init__(self,name,pay):self.name=nameself.pay=pay

这样,在创建worker类的对象时,必须提供name和pay两个参数:

b=worker('Jim',5000)

Python会自动调用worker.init()方法,并传递参数。

细节参考这里init方法

1.3 内置函数 setattr()

此时,可以使用python自带的内置函数 setattr(), 和对应的getattr()

setattr(object, name, value)

object – 对象。
name – 字符串,对象属性。
value – 属性值。

对已存在的属性进行赋值:
>>>class A(object):
...     bar = 1
... 
>>> a = A()
>>> getattr(a, 'bar')          # 获取属性 bar 值
1
>>> setattr(a, 'bar', 5)       # 设置属性 bar 值
>>> a.bar
5如果属性不存在会创建一个新的对象属性,并对属性赋值:>>>class A():
...     name = "runoob"
... 
>>> a = A()
>>> setattr(a, "age", 28)
>>> print(a.age)
28
>>>

setattr() 语法

setattr(object, name, value)

object – 对象。
name – 字符串,对象属性。
value – 属性值。

1.4 网络模型的构建

注意到, 在python的 __init__() 函数中, self 本身就是该类的对象的一个引用,即self是指向该对象本身的一个引用

利用上述这一点,当在神经网络中,

  • 需要给多个属性进行实例化时,
  • 且这多个属性使用的是同一个类进行实例化.

1.4.1 使用 setattr(self, string, object1) 添加属性;

注意到,下面这种方式,由于
Basic_slide_conv() 只经过了一次实例化, 
所以在内存空间中,只会分配一个地址空间给该对象;

虽然后面使用 35 group,  
但这35组本质上使用的同一个对象,即conv_block 该对象;

class Temporal_GroupTrans(nn.Module):def __init__(self,   num_classes=10,num_groups=35, drop_prob=0.5, pretrained= True):super(Temporal_GroupTrans, self).__init__()conv_block = Basic_slide_conv()for i in range( num_groups):setattr(self, "group" + str(i), conv_block)# 自定义transformer模型的初始化, CustomTransformerModel() 在该类中传入初始化模型的参数,# nip:512 输入序列中,每个列向量的编码维度, 16: 注意力头的个数# 600: 中间mlp 隐藏层的维数,  6: 堆叠transforEncode 编码模块的个数;self.trans_model = CustomTransformerModel(512,16,600, 6,droupout=0.5,nclass=4)

如果想要分配35个不同的对象, 即需要分配出35个不同的地址空间用来存储,
那么需要将 Basic_slide_conv() 经过了35次实例化, 
所以需要将 类Basic_slide_conv()  实例化的过程放在循环当中实现;

class Temporal_GroupTrans(nn.Module):def __init__(self,   num_classes=10,num_groups=35, drop_prob=0.5, pretrained= True):super(Temporal_GroupTrans, self).__init__()# conv_block = Basic_slide_conv()for i in range( num_groups):setattr(self, "group" + str(i), Basil_slide_conv() )# 自定义transformer模型的初始化, CustomTransformerModel() 在该类中传入初始化模型的参数,# nip:512 输入序列中,每个列向量的编码维度, 16: 注意力头的个数# 600: 中间mlp 隐藏层的维数,  6: 堆叠transforEncode 编码模块的个数;self.trans_model = CustomTransformerModel(512,16,600, 6,droupout=0.5,nclass=4)

1.4.2 使用 getattr(self, string, object1) 获取属性;

        trans_input_sequence = []for i in range(0, num_groups, ):#   每组语谱图的大小是一个 (bt, ch,96,12)的矩阵,组与组之间没有重叠;cur_group = x[:, :, :, 12 * i:12 * (i + 1)]# VARIABLE_fun = "self.group"   # 每一组,与之对应的卷积模块;# cur_fun = eval(VARIABLE_fun + str(i ))cur_fun = getattr(self, 'group'+str(i))cur_group_out = cur_fun(cur_group).unsqueeze(dim=1)  # [bt,1, 512]trans_input_sequence.append(cur_group_out)
http://www.shuangfujiaoyu.com/news/35881.html

相关文章:

  • 小宽带怎样做视频网站网络推广包括哪些
  • 哪家做网站做得好商城推广
  • 沈阳网站建设哪家做得好人民日报最新新闻
  • 如何利用影视网站做cpa百度手机极速版
  • 哪个yy频道做天龙私服网站微博营销推广策划方案
  • 成都专业网站制作哪家好本地推广最有效的方法
  • 珠海在线网站建设百度销售系统登录
  • 网站建设作业过程太原百度网站快速优化
  • 郑州加盟做网站获客软件排名前十名
  • 自己公司的网站怎么编辑器建站模板平台
  • 网站服务器空间济源网络推广
  • 交友网站如何赚钱磁力棒
  • 保定百度推广排名哈尔滨优化调整人员流动管理
  • 没有备案的网站会怎么样长沙官网seo技术厂家
  • 珠海企业宣传片制作广东网站营销seo方案
  • 河源东莞网站建设长沙百度推广排名
  • 公司宣传网站怎么做上海高玩seo
  • 自己开一个网站怎么赚钱郑州专业seo推荐
  • 网站建设微信商城开发网络销售真恶心
  • 取消wordpress 黑标题seo文章外包
  • 设计手机商城网站建设网站快速搜索
  • 网站建设分几步百度指数电脑端查询
  • 网站建设 中国移动引擎优化seo
  • 耒阳做网站互动营销的案例及分析
  • 广西 网站建设品牌策划方案怎么做
  • 两学一做 答题 网站深圳seo论坛
  • 订牛奶网站怎么做认识网络营销
  • 猪八戒做网站 纠纷关键词简谱
  • 电商网站建设培训淘宝补流量平台
  • 设计之窗网站网络推广怎么做?