当前位置: 首页 > news >正文

企业网站优化搜行者seo北京网站seo设计

企业网站优化搜行者seo,北京网站seo设计,做哪些网站流量大,wordpress修订版本 插件目录 一、决策树定义: 二、决策树特征选择 2.1 特征选择问题 2.2 信息增益 2.2.1 熵 2.2.2 信息增益 三、决策树的生成 3.1 ID3算法 3.1.1理论推导 3.1.2代码实现 3.2 C4.5 算法 3.2.1理论推导 ​ 3.2.2代码实现 四、决策树的剪枝 4.1 原理 4.2 算法思路&#xff1a…

目录

一、决策树定义:

二、决策树特征选择

2.1 特征选择问题

 2.2 信息增益

2.2.1 熵

2.2.2 信息增益

三、决策树的生成

 3.1 ID3算法

3.1.1理论推导

3.1.2代码实现

 3.2 C4.5 算法

3.2.1理论推导

​ 3.2.2代码实现

四、决策树的剪枝

4.1 原理

4.2 算法思路:

五、CART算法

5.1 CART生成

5.1.1 回归树的生成

5.1.2 分类树的生成

 比较:

5.1.3 CART生成算法

5.2 CART剪枝

 六、代码

6.1 代码

6.2 结果


一、决策树定义:

分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。

结点有两种类型:内部结点(internal node)和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类。

⚪:内部结点

正方形:叶结点

二、决策树特征选择

2.1 特征选择问题

特征选择在于选取对训练数据具有分类能力的特征。这样可以提高决策树学习的效率。如果用一个特征去分类,得到的结果与随机的分类没有很大差别,那么这次分类是无意义的。因此,我们要选取有意义的特征进行分类。

举个例子吧~

 如上述表格所示,决定买房子要不要贷款的因素有年龄、有无工作、有无房子、信贷情况四个因素。那么如何选取合适的特征因素呢?

特征选择就是决定用哪个特征来划分特征空间。

       直观上来讲,如果一个特征具有更好的分类能力,或者说,按照各以特征将训练数据集分割成子集,使得各个子集在当前条件下有最好的分类,那么就应该选择这一特征。  

信息增益(information gain)就能够很好的表示这一直观准则。

 2.2 信息增益

2.2.1 熵

在统计学中,熵是表示随机变量不确定性的度量。

设X是一个取有限个值的离散随机变量,其概率分布为

 则随机变量X的熵定义为:

其中如果pi =  0,则0log0 = 0.

单位为bit或者nat。

上只依赖于X的分布,而与X的取值无关,所以也可将X的熵记作H(p)。

熵越大,随机变量的不确定性越大,从定义可以验证:

 

 信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。

2.2.2 信息增益

 

 选择方法:

 计算方法:

输入:训练数据集D和特征值A:

输出:特征A队训练数据集D的信息增益g(D,A),

step1:计算数据集D的经验熵H(D):

step2:计算特征A对数据集D的经验条件熵H(D|A):

step3:计算信息增益:

 举个栗子吧~:

用上面的表,计算每个特征的信息增益!!!!

 所以A3的信息增益值最大,选择A3做最优特征。

三、决策树的生成

 3.1 ID3算法

ID3算法的核心是在决策树上各个结点上应用信息增益准则选择特征,递归地构建决策树。

3.1.1理论推导

对上表用ID3算法建立决策树:

 

3.1.2代码实现

https://blog.csdn.net/colourful_sky/article/details/82056125

 3.2 C4.5 算法

       C4.5算法与ID3类似,C4.5算法对ID3算法进行了改进,C4.5在生产的过程中,用信息增益比来选择特征。

3.2.1理论推导
 3.2.2代码实现

https://www.cnblogs.com/wsine/p/5180315.html

四、决策树的剪枝

4.1 原理

      决策树生成算法递归地产生决策树,直到不能继续下去为止。这样产生的结果容易出现过拟合现象。因为这样生成的决策树过于复杂,所以我们需要对决策树进行简化——剪枝。

剪枝:在决策树学习中将已生成的树进行简化的过程。

本次介绍损失函数最小原则进行剪枝,即用正则化的极大似然估计进行模型选择。

公式这里参考李航老师的书:

 

4.2 算法思路:

五、CART算法

     分类与回归树模型(CART, classification and regression tree)是应用广泛的决策树学习方法。

CART由特征选择、树的生成及剪枝组成,既可以用于回归也可以用于分类

5.1 CART生成

step1:决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大。

step2:决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时用损失函数最小作为剪枝的标准。

5.1.1 回归树的生成

回归树用平方误差最小化准则,选择特征,生成二叉树。

 

5.1.2 分类树的生成

分类树用基尼指数最小化准则,选择特征,生成二叉树。

 比较:

5.1.3 CART生成算法

原理:

 例子:

还是用上面的的表格吧

step1:计算各个特征的基尼指数,选择最有特征以及其最优切分点。

step2:选择基尼指数最小的特征及其对应的切分点 

5.2 CART剪枝

 六、代码

sklearn中决策树都在‘tree’这个模块中,这个模块总共包含五类:

tree.DecisionTreeClassifier 分类树
tree.DecisionTreeRegressor 回归树
tree.export_graphviz 画图专用
tree.ExtraTreeClassifier 高随机版本的分类树
tree.ExtraTreeRegressor 高随机版本的回归树

这里用分类树举例子

6.1 代码

  1. #数据准备
  2. from sklearn.datasets import load_breast_cancer
  3. breast_cancer = load_breast_cancer()
  4. #分离数据
  5. breast_cancer
  6. x=breast_cancer.data
  7. y=breast_cancer.target
  8. #训练数据
  9. from sklearn.model_selection import train_test_split
  10. x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=33,test_size=0.3)
  11. #数据标准化
  12. from sklearn.preprocessing import StandardScaler
  13. breast_cancer_ss = StandardScaler()
  14. x_train = breast_cancer_ss.fit_transform(x_train)
  15. x_test = breast_cancer_ss.transform(x_test)
  16. #分类树
  17. from sklearn.tree import DecisionTreeClassifier
  18. dtc = DecisionTreeClassifier()
  19. dtc.fit(x_train,y_train)
  20. dtc_y_predict = dtc.predict(x_test)
  21. from sklearn.metrics import classification_report
  22. k=0
  23. j=0
  24. for i in y_test:
  25. if i!=dtc_y_predict[j]:
  26. k=k+1
  27. j=j+1
  28. print(k)
  29. print('预测结果:\n:',dtc_y_predict)
  30. print('真是结果:\n:',y_test)
  31. print('Accuracy:',dtc.score(x_test,y_test))
  32. print(classification_report(y_test,dtc_y_predict,target_names=['benign','malignant']))

6.2 结果

 

http://www.shuangfujiaoyu.com/news/33654.html

相关文章:

  • 杭州网站设计推荐柚米友情链接交易购买
  • 山东省建设注册管理网站百度云盘搜索
  • 淄博网站快照优化公司网络营销与策划实践报告
  • wordpress网站seo系统
  • 胶州网站建设电话seo用什么工具
  • 哪些大型网站用python做的推广引流软件
  • 官方网站的重要性seo引流什么意思
  • 网站开发原型 图推广普通话心得体会
  • 个人做商贸网站域名是什么 有什么用
  • wordpress 宋体seo工具不包括
  • 设计网站 知乎昆明百度关键词优化
  • pdf动态网站开发深圳市昊客网络科技有限公司
  • 网站访问频率外贸seo是啥
  • 装置艺术那个网站做的好windows优化大师如何卸载
  • 广州网站 制作信科便宜如何在百度搜索到自己的网站
  • 网站建设网络推广可以搜索国外网站的搜索引擎
  • 惠州网站建设点上海专业seo排名优化
  • 美女和帅哥做私人动作的漫画的网站色盲测试图数字
  • 韩国男女做游戏视频网站网站seo推广seo教程
  • 外贸soho做网站怎么做宁波seo推广平台
  • 南山做网站的公司百度高搜
  • 佛山专业建站公司哪家好二级域名在线扫描
  • seo网站优化经理国家优化防控措施
  • idea怎么做网站网站产品怎么优化
  • 太原网站制作哪家好宁波seo网络推广渠道介绍
  • 成都新津县建设网站软件开发流程
  • 西樵网站建设杭州seo推广优化公司
  • 泰国网站域名不受限制的万能浏览器
  • wordpress 版本回退运营seo是什么意思
  • 易班网站建设的意义seo查询排名系统