当前位置: 首页 > news >正文

企业没有做网站有的坏处怎么去推广自己的产品

企业没有做网站有的坏处,怎么去推广自己的产品,wordpress主题广告,ccms系统序列模型 定义 序列模型是自然语言处理(NLP)和机器学习领域中一类重要的模型,它们特别适合处理具有时间顺序或序列结构的数据,例如文本、语音信号或时间序列数据。 举个例子:一部电影的评分在不同时间段的评分可能是…

序列模型

定义

序列模型是自然语言处理(NLP)和机器学习领域中一类重要的模型,它们特别适合处理具有时间顺序或序列结构的数据,例如文本、语音信号或时间序列数据。

举个例子:一部电影的评分在不同时间段的评分可能是不一样的,锚定效应:当一部电影获得某项大奖后,该电影的评分可能会上升。季节性:新年贺岁电影和圣诞电影在相应时间会更受欢迎。电影评分不是不变的,和时间是有相关性的。

统计工具

处理序列数据需要统计工具和新的深度神经网络架构。我们通常使用 x t x_t xt 表示模型在时间 t t t 的输出, t t t 代表时间步,通过以下公式进行预测: x t ∼ P ( x t ∣ x t − 1 , … , x 1 ) x_t\sim P(x_t|x_{t-1},\dots,x_1) xtP(xtxt1,,x1)
使用条件概率展开: P ( a , b ) = P ( a ) P ( b ∣ a ) = P ( b ) P ( a ∣ b ) P(a,b)=P(a)P(b|a)=P(b)P(a|b) P(a,b)=P(a)P(ba)=P(b)P(ab)
根据条件概率的链式法则有: P ( x ) = P ( x 1 ) ⋅ P ( x 2 ∣ x 1 ) ⋅ P ( x 3 ∣ x 1 , x 2 ) ⋅ ⋯ P ( x t ∣ x 1 , ⋯ , x t − 1 ) P(x)=P(x_1)\cdot P(x_2|x_1)\cdot P(x_3|x_1,x_2)\cdot \cdots P(x_t|x_1,\cdots,x_{t-1}) P(x)=P(x1)P(x2x1)P(x3x1,x2)P(xtx1,,xt1)

对条件概率建模, P ( x t ∣ x 1 , ⋯ , x t − 1 ) = P ( x t ∣ f ( x 1 , ⋯ , x t − 1 ) ) P(x_t|x_1,\cdots,x_{t-1})=P(x_t|f(x_1,\cdots,x_{t-1})) P(xtx1,,xt1)=P(xtf(x1,,xt1))这里的 f f f 函数可以看作对之前的数据进行建模,来预测序列中的下一个元素。(这正是序列模型如循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)和最近的Transformer模型所做的事情)

举个序列预测的例子(文本生成):输入一段文本,根据该文本的数据训练好一个模型,现在有一句话“今天天气……”,要求对之后的话进行续写,续写其实就是预测下一个最可能的字(这也是GPT系列模型的原理),这里每个字就可以看作在时间 t t t 的输出。 根据之前的文本,可能之前出现很多次“今天天气真好”,那么“真”字在“今天天气”已经存在的情况下的概率就会比较高 P ( 真 ∣ 今天天气 ) > P ( 不 ∣ 今天天气 ) P(真|今天天气) >P(不|今天天气) P(今天天气)>P(今天天气)。再根据“真”,预测出“好”。

自回归模型

自回归模型:根据自己之前的序列数据建模进行之后元素的预测,所以叫自回归。
输入数据的数量, 输入 x t − 1 , … , x 1 x_{t-1},\dots,x_1 xt1,,x1 本身因 t t t而异。 也就是说,输入数据的数量这个数字将会随着我们遇到的数据量的增加而增加(甚至是指数级的增长), 因此需要一个近似方法来使这个计算变得容易处理。有以下两种策略。

马尔可夫模型

马尔可夫假设认为现实情况下相当长的序列 x t − 1 , ⋯ , x 1 x_{t-1},\cdots,x_1 xt1,,x1 可能是不必要的, 因此我们只需要满足某个长度为 τ \tau τ 的时间跨度, 即使用观测序列 x t − 1 ⋯ , x t − τ x_{t-1}\cdots,x_{t-\tau} xt1,xtτ 来进行 x t x_t xt 的预测。 这样当 t > τ t>\tau t>τ 时参数的数量总是不变的。
在这里插入图片描述

隐变量自回归模型

在序列模型中,隐变量(Latent Variable)是指那些在时间序列数据中不可直接观测,但却对序列的产生及其动态变化有着重要影响的变量。在这里隐变量可以看作对过去序列观测的总结 h t = f ( x 1 , ⋯ , x t − 1 ) h_t = f(x_1,\cdots,x_{t-1}) ht=f(x1,,xt1).
这样模型需要同时预测 x t x_t xt 和更新 h t h_t ht,于是模型形式上就变成: h t = g ( h t − 1 , x t − 1 ) h_t=g(h_{t-1},x_{t-1}) ht=g(ht1,xt1) x t = P ( x t ∣ h t ) x_t=P(x_t|h_t) xt=P(xtht) 在这里插入图片描述

总结

在这里插入图片描述

本专栏用于记录学习笔记和理解,其内容都是基于李沐老师的课程:动手学深度学习。
可以在b站学习老师的课程:动手学深度学习 PyTorch版
教材:教材

http://www.shuangfujiaoyu.com/news/2486.html

相关文章:

  • wordpress制作数据排行榜优化大师官网
  • 做好评做销量的网站灰色词排名接单
  • 最新网站建设海外黄冈网站推广
  • 在线购物网站模板东莞网站定制开发
  • 深圳企业网站建设制作网络公司网站建设开发
  • 品牌管理公司网站建设科技网站建设公司
  • 网站商城建设方案网站设计案例
  • 企业做网站方案湖南关键词优化品牌价格
  • ai做网站营销推广网
  • 织梦后台搭建网站并调用标签建设厦门seo关键词优化代运营
  • 黄山网站网站建设广告软文
  • 做电商的步骤优化疫情政策
  • 网站定制怎么选择百度一下百度搜索百度一下
  • 使用dw如何给网站做电影搜索引擎yandex入口
  • 钦州网站建设太原百度推广开户
  • 中国人民解放军空军seo优化技术招聘
  • 乌鲁木齐网站建设5118和百度指数
  • 免费网站创建工具西安关键词推广
  • 网站建设的两个方面百度 seo优化作用
  • 建设工程施工承包合同班级优化大师免费下载
  • 全国做网站找哪家好内容营销
  • 铁岭网站制作seo网站关键词排名快速
  • 淘宝seo什么意思搜索引擎优化的主题
  • 网站建设 技术可行性推广软件排行榜前十名
  • 建设执业资格注册中心网站营销策略是什么
  • 门户网站开发视频百度sem优化师
  • 工业设计的就业前景和就业方向兰州模板网站seo价格
  • 网站开发专业的领军人物浙江网站建设营销
  • 上海代理注册公司快速优化排名公司推荐
  • 旅游网站怎么做才能被关注搜索引擎优化怎么做