当前位置: 首页 > news >正文

1.网站建设基本流程是什么青岛爱城市网app官方网站

1.网站建设基本流程是什么,青岛爱城市网app官方网站,建论坛网站多少钱,腾讯企业邮箱登录入口免费版🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人! 🌙个人主页:阿芒的主页 ⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学…

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

文章目录

  • 向量的坐标表示
  • 利用坐标作向量的线性运算
  • 向量的模、方向角、投影

向量的坐标表示

空间直角坐标系下,任意向量r→\overrightarrow{r}r可用向径OM→\overrightarrow{OM}OM表示.
i→\overrightarrow{i}ij→\overrightarrow{j}jk→\overrightarrow{k}k分别表示x、y、zx、y、zxyz轴上的单位向量,设点MMM的坐标为M(x,y,z)M(x,y,z)M(x,y,z),则
OM→\overrightarrow{OM}OM=r→\overrightarrow{r}r=xi→+yj→+zk→x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}xi+yj+zk 称为向量r→\overrightarrow{r}r坐标分解式.
xi→,yj→,zk→x\overrightarrow{i},y\overrightarrow{j},z\overrightarrow{k}xiyjzk称为向量r→\overrightarrow{r}r沿三个坐标轴方向的分向量.


利用坐标作向量的线性运算

a→=(ax,ay,az),b→=(bx,by,bz)\overrightarrow{a}=(a_{x},a_{y},a_{z}),\overrightarrow{b}=(b_{x},b_{y},b_{z})a=(ax,ay,az),b=(bx,by,bz),λ{\lambda}λ为实数,则
a→±b→\overrightarrow{a}\pm\overrightarrow{b}a±b=(ax±bx,ay±by,az±bz)(a_{x}\pm b_{x}, a_{y}\pm b_{y},a_{z}\pm b_{z})(ax±bx,ay±by,az±bz)
λa→\lambda\overrightarrow{a}λa=(λax,λay,λaz)(\lambda a_{x},\lambda a_{y},\lambda a_{z})(λax,λay,λaz)
平行向量对应坐标成比例:
a→≠0→\overrightarrow{a}\neq\overrightarrow{0}a=0时,
a→∥b→\overrightarrow{a}\parallel\overrightarrow{b}ab ⟺\Longleftrightarrowb→\overrightarrow{b}b=λa→\lambda\overrightarrow{a}λaλ\lambdaλ为唯一 实数).
~~~~~~~~~~~~            ⟺\Longleftrightarrow bxax\frac{{b_{x}}}{a_{x}}axbx=byay\frac{{b_{y}}}{a_{y}}ayby=bzaz\frac{{b_{z}}}{a_{z}}azbz


向量的模、方向角、投影

  • 向量的模与两点间的距离公式

  • 向量的模
    r→=(x,y,z)\overrightarrow{r}=(x,y,z)r=(x,y,z),作OM→\overrightarrow{OM}OM=r→\overrightarrow{r}r,则有 ∣r→∣=∣OM→∣=x2+y2+z2|\overrightarrow{r}|=|\overrightarrow{OM}| =\sqrt{x^{2}+y^{2}+z^{2}}r=OM=x2+y2+z2

  • 两点间的距离公式
    A(x1,y1,z1)A(x_{1},y_{1},z_{1})A(x1,y1,z1),B(x2,y2,z2)B(x_{2},y_{2},z_{2})B(x2,y2,z2),因为
    AB→\overrightarrow{AB}AB= OB→\overrightarrow{OB}OB-OA→\overrightarrow{OA}OA=(x2−x1,y2−y1,z2−z1)(x_{2}-x_{1},y_{2}-y_{1},z_{2}-z_{1})(x2x1,y2y1,z2z1),得两点间的距离公式:
    ∣AB∣|{AB}|AB =∣AB→∣|\overrightarrow{AB}|AB=(x2−x1)2+(y2−y1)2+(z2−z1)2\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}(x2x1)2+(y2y1)2+z2z1)2

  • 方向角与方向余弦

  • 方向角
    设有两非零向量 a→\overrightarrow{a}a,b→\overrightarrow{b}b,任取空间一点O, 作OA→\overrightarrow{OA}OA=a→\overrightarrow{a}a, OB→\overrightarrow{OB}OB=b→\overrightarrow{b}bφ=∠AOB(0≤φ≤π)\varphi=∠AOB(0 \leq \varphi \leq \pi)φ=AOB(0φπ)为向量a→\overrightarrow{a}a,b→\overrightarrow{b}b 的夹角.
    类似可定义向量与轴,轴与轴的夹角.
    给定 r→=(x,y,z)≠0→\overrightarrow{r}=(x,y,z)\neq\overrightarrow{0}r=(x,y,z)=0,称 r→\overrightarrow{r}r与三坐标轴的夹角α,β,γ\alpha,\beta,\gammaα,β,γ为其方向角

  • 方向余弦
    方向角的余弦称为方向余弦

cosαcos\alphacosα= x∣r→∣\frac{x}{|\overrightarrow{r}|}rx=xx2+y2+z2\frac{x}{ \sqrt{x^{2}+y^{2}+z^{2} }}x2+y2+z2x
cosβcos\betacosβ= y∣r→∣\frac{y}{|\overrightarrow{r}|}ry=yx2+y2+z2\frac{y}{ \sqrt{x^{2}+y^{2}+z^{2} }}x2+y2+z2y
cosγcos\gammacosγ= z∣r→∣\frac{z}{|\overrightarrow{r}|}rz=zx2+y2+z2\frac{z}{ \sqrt{x^{2}+y^{2}+z^{2} }}x2+y2+z2z

  • 方向余弦的性质
    cos2αcos^{2}\alphacos2α+cos2βcos^{2}\betacos2β+cos2γcos^{2}\gammacos2γ=1
    向量r→\overrightarrow{r}r的单位向量:r→°=r→∣r→∣\overrightarrow{r}^{°}=\frac{\overrightarrow{r}}{|\overrightarrow{r}|}r°=rr=(cosα,cosβ,cosγ)(cos\alpha,cos\beta,cos\gamma)cosα,cosβ,cosγ

  • 向量在轴上的投影

  • 空间一点在轴上的投影
    过点AAA作轴uuu的垂直平面,交点A′A^{'}A即为点AAA在轴uuu上的投影.

  • 向量在轴上的投影
    设有一轴uuue→\overrightarrow{e}e是轴uuu上与uuu轴同向的单位向量.
    已知向量AB→\overrightarrow{AB}AB的起点AAABBB在轴uuu上的投影分别为A′A^{'}AB′B^{'}B,则A′B′→\overrightarrow{A^{'}B^{'}}AB称为AB→\overrightarrow{AB}AB在轴uuu上的分向量.
    A′B′→=λe→\overrightarrow{A^{'}B^{'}}={\lambda}\overrightarrow{e}AB=λe,则λ{\lambda}λ称为AB→\overrightarrow{AB}AB在轴uuu上的投影.
    向量AB→\overrightarrow{AB}AB在轴uuu上的投影记为PrjuAB→Prj_{u}\overrightarrow{AB}PrjuAB(AB→)u(\overrightarrow{AB})_{u}(AB)u.

:若a→=(ax,ay,az)\overrightarrow{a}=(a_{x},a_{y},a_{z})a=(ax,ay,az),则
ax=Prjxa→,ay=Prjya→,az=Prjza→a_{x}=Prj_{x}\overrightarrow{a},a_{y}=Prj_{y}\overrightarrow{a},a_{z}=Prj_{z}\overrightarrow{a}ax=Prjxa,ay=Prjya,az=Prjza

  • 向量的投影性质
    ①投影性质1
    向量AB→\overrightarrow{AB}AB在轴uuu上的投影等于向量的模乘以轴与向量的夹角的余弦:
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                 PrjuAB→Prj_{u}\overrightarrow{AB}PrjuAB=∣AB→∣cosφ|\overrightarrow{AB}|cos\varphiABcosφ
    ②投影性质2
    两个向量的和在轴上的投影等于两个向量在该轴上的投影之和.(可推广到任意有限个
    ~~~~~~~~~~~~~~~~~~~~~~                      Prju(a→1+a→2)Prj_{u}(\overrightarrow{a}_{1}+\overrightarrow{a}_{2})Prju(a1+a2)=Prjua→1+Prjua→2Prj_{u}\overrightarrow{a}_{1}+Prj_{u}\overrightarrow{a}_{2}Prjua1+Prjua2
    ③投影性质3
    ~~~~~~~~~~~~~~~~~~~~~~                      Prju(λa→)Prj_{u}(\lambda\overrightarrow{a})Prju(λa)=λPrjua→\lambda Prj_{u}\overrightarrow{a}λPrjua

http://www.shuangfujiaoyu.com/news/23879.html

相关文章:

  • wordpress 日历百度广告优化
  • 可以做翻译任务的网站电商网站建设哪家好
  • 哪里学网站建设与管理跨境电商哪个平台比较好
  • 彩票走势网站怎么做的莆田seo
  • 西安营销型网站建设淘宝代运营公司十大排名
  • 永城网站设计公司网络营销推广方案范文
  • 付费网站推广如何推广网站方法
  • 聊城住房和城乡建设部网站百度代发收录
  • 福田网站设计公司哪家好重庆森林经典台词图片
  • 建网站租服务器多少钱培训机构连锁加盟
  • 济南网站建设泉诺软文营销的技巧
  • 贵港北京网站建设海淀seo搜索引擎优化公司
  • 专做logo网站叫什么地方优化设计三年级下册数学答案
  • 文化传播公司网站备案抖音搜索关键词排名查询
  • 网站后台iis配置windows优化大师有必要安装吗
  • 商城网站建设注意什么国内营销推广渠道
  • wordpress小说插件宁波网站优化公司推荐
  • 网站开发 word文件预览常用的关键词优化策略有哪些
  • 最好的在线网页代理谷歌优化教程
  • 南阳做做网站免费建站
  • 柳州企业网站开发公司优秀企业网站模板
  • 宿州网站建设费用北京全网营销推广公司
  • 有域名之后怎么做网站黑马教育培训官网
  • 汕头手机建站模板2024年度关键词
  • 深圳和海枫建设集团有限公司网站海南百度推广seo
  • 天津网站建设揭秘网站建设杭州
  • 图片展示网站php源码百度网首页登录入口
  • wordpress相对地址windows优化大师怎么样
  • 网站建设 xplogoseo标签优化方法
  • 专业商城网站建设公司如何开网店