当前位置: 首页 > news >正文

顺义广州网站建设淘宝美工培训

顺义广州网站建设,淘宝美工培训,济南网站建设培训,上海注册公司多久目录 一、KNN 算法简介 二、KNN算法的使用 1.读取数据 2.处理数据 三、训练模型 1.导入KNN模块 2.训练模型 3.出厂前测试 四、进行测试 1.处理数据 2.进行测试 总结 一、KNN 算法简介 KNN 是一种基于实例的学习算法。它通过比较样本之间的距离来进行预测。算法的核心…

目录

一、KNN 算法简介

二、KNN算法的使用

1.读取数据

2.处理数据

三、训练模型

1.导入KNN模块

2.训练模型

3.出厂前测试

四、进行测试

1.处理数据

2.进行测试

总结


一、KNN 算法简介

        KNN 是一种基于实例的学习算法。它通过比较样本之间的距离来进行预测。算法的核心思想是:对于一个未知样本,通过找到距离该样本最近的 (k) 个已知样本,根据这些已知样本的标签来预测未知样本的标签或数值。

 

二、KNN算法的使用

1.读取数据

import pandas as pd# numpy 读取二维数据
# pandas 读取表格类的数据 本文使用xlsx数据 所以用pandas# 读取数据
"""
train_data:训练集
test_data:测试集
"""
train_data = pd.read_excel("鸢尾花训练数据.xlsx")
test_data = pd.read_excel("鸢尾花测试数据.xlsx")

 

2.处理数据

  • 提取出特征和分类标签
"""
处理训练集数据;
数据重排;
变量与标签分离.
"""
train_x = train_data[['萼片长(cm)', '萼片宽(cm)', '花瓣长(cm)', '花瓣宽(cm)']]  # 特征
train_y = train_data[['类型_num']]  # 提取单列返回series 需要用[]将其变成列表   # 标签
  • 将每一列数据进行标准化处理,减小误差(大部分情况下能够减小误差)
"""
标准化语法       归一化:0~1 是对每一个特征列进行归一化
Z-Score标准化         -1~1
"""# 这里用的是scale模块 即Z-Score标准化方法
from sklearn.preprocessing import scaledata = pd.DataFrame()
# 对每一列数据进行标准化  目标: 让每个特征数据都在差不多大小范围内
data['萼片长标准化'] = scale(train_x['萼片长(cm)'])
data['萼片宽标准化'] = scale(train_x['萼片宽(cm)'])
data['花瓣长标准化'] = scale(train_x['花瓣长(cm)'])
data['花瓣宽标准化'] = scale(train_x['花瓣宽(cm)'])

 

三、训练模型

1.导入KNN模块

"""
使用sklearn库中的KNN模块
"""
from sklearn.neighbors import KNeighborsClassifier

 

2.训练模型

  1. knn = KNeighborsClassifier(n_neighbors=9): 创建一个 KNN 分类器对象

  2. n_neighbors=9 表示选择 9 个最近邻居来进行分类

  3. 使用交叉验证等方法选择合适的 K 值。常用的选择方式是尝试不同的 K 值,并选择表现最好的 K。
  4. 选择奇数的 K 值可以避免在分类时出现平局情况。

  5. knn.fit(data, train_y): 使用 data 作为特征数据和 train_y 作为目标标签训练 KNN 模型。训练完成后,knn 变成一个已经训练好的模型,可以用来对新数据进行预测。

knn = KNeighborsClassifier(n_neighbors=9)  # 参数最好是奇数 均值好判断
knn.fit(data, train_y)  # 训练模型  knn就是训练好的模型

 

3.出厂前测试

  • 使用训练集数据和分类对这个训练好的模型进行出厂前的测试
train_predicted = knn.predict(data)  # 用knn模型对训练集data进行预测  相当于复习
score = knn.score(data, train_y)  # 直接将使用data数据预测后的数据与data数据原分类进行对比 可以用来判断复习的正确率
print(score)
  • 测试结果:
0.9696969696969697  # 说明该模型存在一点误差

 

四、进行测试

1.处理数据

  • 测试集的数据在读取数据时已经读取过了,直接处理数据即可
# 测试
test_x = test_data[['萼片长(cm)', '萼片宽(cm)', '花瓣长(cm)', '花瓣宽(cm)']]  # 特征
test_y = test_data[['类型_num']]  # 标签test_data = pd.DataFrame()
# 对每一列数据进行标准化
test_data['萼片长标准化'] = scale(test_x['萼片长(cm)'])
test_data['萼片宽标准化'] = scale(test_x['萼片宽(cm)'])
test_data['花瓣长标准化'] = scale(test_x['花瓣长(cm)'])
test_data['花瓣宽标准化'] = scale(test_x['花瓣宽(cm)'])

 

2.进行测试

test_predicted = knn.predict(test_data) # 使用knn模型对test_data数据进行预测
print(test_predicted)
score = knn.score(test_data, test_y)    # 判断测试集正确率
print(score)

测试结果:

[0 0 0 0 0 1 0 1 1]
0.8888888888888888

 

总结

        KNN 算法是一种直观且实用的机器学习算法,适用于许多实际问题。它的优点在于简单易用,但在处理大数据集或高维数据时可能会遇到计算性能问题。通过合理选择 K 值和距离度量,可以提高 KNN 算法的效果。

http://www.shuangfujiaoyu.com/news/23052.html

相关文章:

  • 做招商加盟网站怎么做seo综合查询爱站
  • 外包制作appseo服务公司
  • bbs网站设计模板小程序制作
  • 实验中心网站建设seo是什么车
  • 网站html模板商品推广与营销的方式
  • 惠民县建设局官方网站投放广告的网站
  • 上海市建设工程交易中心网站脚本外链平台
  • php网站开发背景希爱力跟万艾可哪个猛
  • 学校网站建设重要性怎么在百度上添加自己的店铺地址
  • 咸鱼网站做链接深圳网站优化平台
  • 那里做直播网站系统优化软件十大排名
  • 徐汇企业网站建设沧州网站运营公司
  • 做网站汉口网上营销是做什么的
  • 网站制作的重要流程图廊坊seo网络推广
  • 网站做收录是什么意思微信腾讯会议
  • 做网站跟app的区别网络营销推广策划案例
  • 连云港做网站制作首选公司一句话宣传自己的产品
  • 广东品牌网站建设报价辅导班
  • 做微信营销网站建设文件外链网站
  • 千锋教育招聘seo推广怎么入门
  • 京东可以做特效的网站百度网站app下载
  • 济南定制网站建设公司鞋子软文推广300字
  • 做贺卡的网站网络视频营销平台
  • 上街郑州网站建设seo推广系统
  • 做av网站赚钱吗西安关键词seo
  • 中国建设官方网站今日特大新闻新事
  • 做做网站入口夫唯seo
  • wordpress棋牌台州seo网站排名优化
  • 做服装公司需要什么网站代运营网店公司
  • 咸宁网站seo排名优化推广网站推荐