当前位置: 首页 > news >正文

用axuer 做网站产品原型seo网站制作优化

用axuer 做网站产品原型,seo网站制作优化,推广网络怎么做,中山网站设计收费标准目录 同期数分析 加载数据 单月实现 统计每个月的订单量 求2月份的订单量和用户数量 求2月之前的历史订单量 筛选出2023年2月的新增的用户数 计算2023年2月在后面的留存情况 完整的2023年2月份同期群结果 遍历合并和分析 引入月份列表 遍历 调整成留存率的形式 回…

目录

同期数分析

加载数据

单月实现

统计每个月的订单量

求2月份的订单量和用户数量

求2月之前的历史订单量

筛选出2023年2月的新增的用户数

计算2023年2月在后面的留存情况

完整的2023年2月份同期群结果

遍历合并和分析

引入月份列表

遍历

调整成留存率的形式

回购客单的同期群实现

留存客单


同期数分析

同期群分析是数据分析中的经典思维,其核心逻辑是将用户按初始行为的发生时间划分为不同的群组,进而分析相似群组的行为如何随时间变化

举例:下表记录了每个月新购买的用户数,并统计每个月的新增用户在之后月份的复购情况

数据截止到2023年7月,如图下所示。

  • 数据的第一行,2023年1月有97个新用户

  • 之后的+1月(2023年2月)有46%的用户再次光顾

  • +2月(2023年3月)仍有39%的回头客

  • 第一行的46%、39%都是对应复购人数占2023年1月新增购买用户的比重,这些人属于2023年1月同一期的新增用户

  • 其他行也是一样的道理,每一行为同一个群组,反映同一期新增用户在之后一段时间复购行为的变化趋势。

上表的百分比为留存率,留存率=某月复购用户数/对应期新增用户数

我们也可以将留存率或者说是回购率中的回购,当做观察和分析的"行为",而如果把"回购客单价"当做追踪分析的行为,就可以从客单价的维度对用户进行分析.

前面的同期群分析是从时间的维度来划分群组的,也可以改变分组逻辑,用渠道+月份来划分群组.

加载数据

# 加载数据
import pandas as pd
df = pd.read_excel('../data/k_group_anlysis.xlsx')
df

单月实现

统计每个月的订单量

# 目标1: 统计每个月的订单量
# 1.1 加入 y_m 月份标签
df['y_m'] = df['付款时间'].astype(str).str[:7]
df['y_m'].unique()
# 1.2 统计每个月的订单量 且 排序
df['y_m'].value_counts().sort_index()

求2月份的订单量和用户数量

# 3.1 指定月份 '2023-02'
month = '2023-02'# 3.2 筛选出指定月份相关的订单(订单数量)
sample = df[df['y_m'] == month]
print("二月份的订单量: ", len(sample))# 3.3 求 指定月份 每个用户的总实付总额(用户数量)
sample_c = sample.groupby('用户ID')['实付金额'].sum().reset_index()
print("二月份的用户量: ", len(sample_c))# 3.4 打印 3.3的前5条数据
sample_c.head()

求2月之前的历史订单量

history = df[df['y_m'] == '2023-01']
history.head()
print(history['y_m'].unique())history = df.loc[df['y_m'] == '2023-01',:]
history.head()

筛选出2023年2月的新增的用户数

# 目标5: 筛选出2023年2月新增的用户数
sample_new = sample_c.loc[sample_c['用户ID'].isin(history['用户ID'])==False, :]print('2月份新增用户数: ', len(sample_new))
sample_new.head()

sample_new = sample_c.loc[sample_c['用户ID'].isin(history['用户ID'])==False, :]

历史订单量是2023年1月,通过使用isin函数筛选出不是在1月订单量中就是2月新增的订单量.

计算2023年2月在后面的留存情况

# 目标6: 计算2023年2月在后面的留存情况
# 1 准备容器
re = []# 2 遍历 ['2023-03', '2023-04', '2023-05', '2023-06','2023-07','2023-08','2023-09','2023-10','2023-11','2023-12']
for month in ['2023-03', '2023-04', '2023-05', '2023-06','2023-07','2023-08','2023-09','2023-10','2023-11','2023-12']:# print(month)# 2.1 获取下个月的数据next_month = df.loc[df['y_m'] == month, :]# print('---------------------')# print(next_month)# 2.2 获取留存的数据target_user = sample_new.loc[sample_new['用户ID'].isin(next_month['用户ID']), :]# 2.3 向容器中追加 yyyy-mm留存情况: 999re.append(f"{month} 留存情况: {len(target_user)}")# 3 验证 
re

完整的2023年2月份同期群结果

# 加入新增数据,得到完整2023年2月份同期群结果
re.insert(0,['2023年2月新增用户:',len(sample_c)])
re

遍历合并和分析

引入月份列表

# 目标1 为了便于循环,我们引入了月份列表
month_lst = df['y_m'].unique()
print(month_lst)

遍历

# 1 月份列表 month_lst
month_lst = df['y_m'].unique()# 2 准备最终容器 final
final = pd.DataFrame()# 3 遍历月份列表
for i in range(len(month_lst)):# print(i, month_lst[i])# 3.1 构造和月份一样长的列表,方便后续格式统一 countcount = [0] * len(month_lst)# print(count)# 3.2 筛选出当月订单,并按用户ID分组 target_monthtarget_month = df[df['y_m'] == month_lst[i]]# print('---------------------------')# print(target_month)# 3.3 求当月订单每个用户的实付金额 target_userstarget_users = target_month.groupby("用户ID")['实付金额'].sum().reset_index()# print('---------------------------')# print(month_lst[i], len(target_users))# 3.4 判断是否是第一个月if i == 0:# 3.4.1 如果是第一个月,则跳过(因为不需要和历史数据验证是否为新增用户) new_target_usersnew_target_users = target_month.groupby("用户ID")['实付金额'].sum().reset_index()else:# 3.4.2 如果不是第一个月# 3.4.2.1 找到之前的历史订单 historyhistory = df.loc[df['y_m'].isin(month_lst[:i])]# print(history)# print('-------------------------')# 3.4.2.2 筛选出未在历史订单中出现过的新增用户 new_target_usersnew_target_users = target_users.loc[target_users['用户ID'].isin(history["用户ID"])==False,:]# 3.5 将当月新增用户数放在第一个值中count[0] = len(new_target_users)# print(count)# 3.6 以月为单位,循环遍历,计算留存情况"""for j, ct in zip(range(i+1,len(month_lst)), range(1, len(month_lst))):i = 2i+1=3, 12, [3, 4, 5, 6, 7, 8, 9, 10, 11]    1, 12, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]i = 3i+=4, 12, [4, 5, 6, 7, 8, 9, 10, 11]1, 12, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]"""for j, ct in zip(range(i+1,len(month_lst)), range(1, len(month_lst))):# 3.6.1 下一个月的订单 next_monthnext_month = df.loc[df['y_m'] == month_lst[j], :]next_users = next_month.groupby("用户ID")['实付金额'].sum().reset_index()# 3.6.2 计算在该月仍然留存的用户数量isin = new_target_users['用户ID'].isin(next_users['用户ID']).sum()count[ct] = isin# print(count)# 3.7 格式转置result = pd.DataFrame({month_lst[i] : count}).T# print(result)# print('-------------------------------')# 3.8 合并final = pd.concat([final, result], axis=0)# 4 指定列名 '当月新增','+1月','+2月','+3月','+4月','+5月','+6月','+7月','+8月','+9月','+10月','+11月'
final.columns = ['当月新增','+1月','+2月','+3月','+4月','+5月','+6月','+7月','+8月','+9月','+10月','+11月']# 5 验证
final

调整成留存率的形式

# 目标: 调整成留存率的形式
# 1 让final每个元素 除以 当月新增, 只保留 第二列往后的列内容
result = final.divide(final['当月新增'], axis = 0).iloc[:,1:]
# 2 新增当月新增列
result['当月新增'] = final['当月新增']
# 3 验证
result

回购客单的同期群实现

#引入y_m
month_lst = df['y_m'].unique()#后面加了个m,代表金额相关
final_m = pd.DataFrame()#中间代码相同
for i in range(len(month_lst) - 1):#构造和月份一样长的列表,方便后续格式统一count = [0] * len(month_lst)#筛选出当月订单,并按用户昵称分组target_month = df.loc[df['y_m'] == month_lst[i],:]target_users = target_month.groupby('用户ID')['实付金额'].sum().reset_index()#如果是第一个月,则跳过(因为不需要和历史数据验证是否为新增用户)if i == 0:new_target_users = target_month.groupby('用户ID')['实付金额'].sum().reset_index()else:#如果不是,找到之前的历史订单history = df.loc[df['y_m'].isin(month_lst[:i]),:]#筛选出未在历史订单中出现过的新增用户new_target_users = target_users.loc[target_users['用户ID'].isin(history['用户ID']) == False,:]#将当月新增用户数放在第一个值中count[0] = len(new_target_users)#以月为单位,循环遍历,计算留存情况for j,ct in zip(range(i + 1,len(month_lst)),range(1,len(month_lst))):#下一个月的订单next_month = df.loc[df['y_m'] == month_lst[j],:]next_users = next_month.groupby('用户ID')['实付金额'].sum().reset_index()#计算在该月仍然留存的用户的回购金额isin_m = next_users.loc[next_users['用户ID'].isin(new_target_users['用户ID']) == True,'实付金额'].sum()count[ct] = isin_m#格式转置result = pd.DataFrame({month_lst[i]:count}).T#合并final_m = pd.concat([final_m,result])final_m.columns = ['当月新增','+1月','+2月','+3月','+4月','+5月','+6月','+7月','+8月','+9月','+10月','+11月']final_m

留存客单

# 留存客单
result_m = final_m / final
result_m['当月新增'] = final_m['当月新增']
result_m

http://www.shuangfujiaoyu.com/news/21545.html

相关文章:

  • 个人网站制作手绘百度贴吧入口
  • 聊城网站建设费用网站开发流程图
  • 中间商可以做网站吗网站的宣传与推广
  • 营销型网站一站式服务seo策略什么意思
  • 建设食品商购网站nba季后赛最新排名
  • 纪检监察网站建设情况汇报对seo的理解
  • 医保局网站建设中标公告免费网站软件
  • 个性化网站制作怎样创建网站平台
  • wordpress http错误.市场seo是什么意思
  • 哪个网站可以做面料订单有哪些免费网站可以发布广告
  • 麻城网站开发舆情视频
  • sketch可以做网站交互么乐天seo培训中心
  • 嘉兴做网站优化价格网站域名查询
  • 如何做cpa单页网站新闻博客软文自助推广
  • 南京做网站优化哪家好企业内训机构
  • 沈阳三好街做网站公司网站快速收录软件
  • 大连零基础网站建设教学在哪里竞价托管选择微竞价
  • 源码出售网站怎么做刚刚地震最新消息今天
  • 内蒙古网站制作公司惠州seo网站推广
  • windows和linux做网站百度关键词排名十大排名
  • 有源码如何搭建网站百度官方app免费下载
  • 网站开发问题百度知道首页官网
  • 网站建设商务如何做市场推广方案
  • 网站建设的具体代码三只松鼠网络营销案例分析
  • 一元云淘网站开发磁力岛
  • wordpress在线查询系统seo关键词排名优化官网
  • 如何建设微网站广东公共广告20120708
  • asp网站无法上传图片商品关键词怎么优化
  • 烟台高新区建设局网站优化的含义
  • 湖南省建设厅seo搜索优化工具