当前位置: 首页 > news >正文

教育行业网站怎么做百度推广一个月费用

教育行业网站怎么做,百度推广一个月费用,辽宁省建设工程信息网停用,响应式制作网站建设一. 使用kohya_ss的GUI版本(https://github.com/bmaltais/kohya_ss.git) 这个版本跟stable-diffusion-webui的界面很像,只不过是训练模型专用而已,打开的端口同样是7860。 1.双击setup.bat,选择1安装好xformers,pytorch等和cuda…

一. 使用kohya_ss的GUI版本(https://github.com/bmaltais/kohya_ss.git)

这个版本跟stable-diffusion-webui的界面很像,只不过是训练模型专用而已,打开的端口同样是7860。

1.双击setup.bat,选择1安装好xformers,pytorch等和cuda相关的库,然后可以control+C退出.将requirements.txt里面的内容除了“-e .”外复制到req.txt,然后在虚拟环境下({venv}\Scripts=E:\SD_WIN\kohya_ss\venv\Scripts)执行下面代码加速安装:

pip install -r {xxx}/req.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装结束后,重新双击setup.bat并选择1,查缺补漏。

2.双击gui.bat运行,这个和stable-diffusion-webui不一样,不会自动打开浏览器的。自行在chrome上输入“http://127.0.0.1:7860/”.

注意:默认选择的是dreambooth,不要一上来就设置哦,那玩意非常大,通常一次7G+,默认来20次,哈哈
3.选择Lora标签,SD1.5模块不需要考虑Accelerate launch,设置model,注意“Pretrained model name or path”最好先点 选择好路径,然后点 选好模型。类似这样
值得一提的是图片和数据应该是放一块的,比如C:/database/1_images/ 里面的数据应该是1个图片对应一个text文本,类似这样:
这个另外图中的pr是模块输出的文件名,我这是测试,随便按的。
如果不需要调整啥参数,默认是值就是给SD1.5用的,所以我跳过“Parameters”等,只需要填写好“Folders”
主要是填好输出路径,logs路径随便填。
4.start training
==========以上是SD-Scripts GUI版本训练SD1.5的测试================
本来我也想测一下SDXL版本的Lora训练的,奈何机器不行,机器显存8G+,内存16G+的,一直出错,可以考虑改一下“Accelerate launch”的“Mixed precision”=“no”,我这边改了后还是没法通过,主要还是机器问题,out of memory,哈哈

19:07:38-166454 INFO     Start training LoRA Standard ...
19:07:38-167453 INFO     Validating lr scheduler arguments...
19:07:38-168449 INFO     Validating optimizer arguments...
19:07:38-169446 INFO     Validating E:/SD_WIN/kohya_ss/logs existence and writability... SUCCESS
19:07:38-171441 INFO     Validating E:/SD_WIN/kohya_ss/outputs existence and writability... SUCCESS
19:07:38-172439 INFO     Validating E:/SD_WIN/stable-diffusion-webui/models/Stable-diffusion/sd_xl_base_1.0.safetensorsexistence... SUCCESS
19:07:38-173436 INFO     Validating C:/sdxl existence... SUCCESS
19:07:38-174433 INFO     Folder 1_images: 1 repeats found
19:07:38-186400 INFO     Folder 1_images: 8 images found
19:07:38-187399 INFO     Folder 1_images: 8 * 1 = 8 steps
19:07:38-188396 INFO     Regulatization factor: 1
19:07:38-189394 INFO     Total steps: 8
19:07:38-190389 INFO     Train batch size: 1
19:07:38-191387 INFO     Gradient accumulation steps: 1
19:07:38-192384 INFO     Epoch: 1
19:07:38-193383 INFO     Max train steps: 1600
19:07:38-193383 INFO     stop_text_encoder_training = 0
19:07:38-194380 INFO     lr_warmup_steps = 160
19:07:38-221307 INFO     Saving training config to E:/SD_WIN/kohya_ss/outputs\pr1_sdxl_20240515-190738.json...
19:07:38-256213 INFO     Executing command: E:\SD_WIN\kohya_ss\venv\Scripts\accelerate.EXE launch --dynamo_backend no--dynamo_mode default --mixed_precision no --num_processes 1 --num_machines 1--num_cpu_threads_per_process 2 E:/SD_WIN/kohya_ss/sd-scripts/sdxl_train_network.py--config_file E:/SD_WIN/kohya_ss/outputs/config_lora-20240515-190738.toml
19:07:38-263218 INFO     Command executed.
2024-05-15 19:08:39 INFO     Loading settings from                                                    train_util.py:3744E:/SD_WIN/kohya_ss/outputs/config_lora-20240515-190738.toml...INFO     E:/SD_WIN/kohya_ss/outputs/config_lora-20240515-190738                   train_util.py:3763
2024-05-15 19:08:39 INFO     prepare tokenizers                                                   sdxl_train_util.py:134
2024-05-15 19:08:41 INFO     update token length: 75                                              sdxl_train_util.py:159INFO     Using DreamBooth method.                                               train_network.py:172INFO     prepare images.                                                          train_util.py:1572INFO     found directory C:\sdxl\1_images contains 8 image files                  train_util.py:1519WARNING  No caption file found for 1 images. Training will continue without       train_util.py:1550captions for these images. If class token exists, it will be used. /1枚の画像にキャプションファイルが見つかりませんでした。これらの画像についてはキャプションなしで学習を続行します。classtokenが存在する場合はそれを使います。WARNING  C:\sdxl\1_images\videoplayback[(000859)2023-11-09-22-17-15].jpg          train_util.py:1557INFO     8 train images with repeating.                                           train_util.py:1613INFO     0 reg images.                                                            train_util.py:1616WARNING  no regularization images / 正則化画像が見つかりませんでした              train_util.py:1621INFO     [Dataset 0]                                                              config_util.py:565batch_size: 1resolution: (1024, 1024)enable_bucket: Truenetwork_multiplier: 1.0min_bucket_reso: 256max_bucket_reso: 2048bucket_reso_steps: 64bucket_no_upscale: True[Subset 0 of Dataset 0]image_dir: "C:\sdxl\1_images"image_count: 8num_repeats: 1shuffle_caption: Falsekeep_tokens: 0keep_tokens_separator:secondary_separator: Noneenable_wildcard: Falsecaption_dropout_rate: 0.0caption_dropout_every_n_epoches: 0caption_tag_dropout_rate: 0.0caption_prefix: Nonecaption_suffix: Nonecolor_aug: Falseflip_aug: Falseface_crop_aug_range: Nonerandom_crop: Falsetoken_warmup_min: 1,token_warmup_step: 0,is_reg: Falseclass_tokens: imagescaption_extension: .txtINFO     [Dataset 0]                                                              config_util.py:571INFO     loading image sizes.                                                      train_util.py:853
100%|██████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 2025.13it/s]INFO     make buckets                                                              train_util.py:859WARNING  min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is   train_util.py:876set, because bucket reso is defined by image size automatically /bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されますINFO     number of images (including repeats) /                                    train_util.py:905各bucketの画像枚数(繰り返し回数を含む)INFO     bucket 0: resolution (1024, 1024), count: 8                               train_util.py:910INFO     mean ar error (without repeats): 0.0                                      train_util.py:915WARNING  clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません   sdxl_train_util.py:343INFO     preparing accelerator                                                  train_network.py:225
accelerator device: cudaINFO     loading model for process 0/1                                         sdxl_train_util.py:30INFO     load StableDiffusion checkpoint:                                      sdxl_train_util.py:70E:/SD_WIN/stable-diffusion-webui/models/Stable-diffusion/sd_xl_base_1.0.safetensors
2024-05-15 19:08:47 INFO     building U-Net                                                       sdxl_model_util.py:192INFO     loading U-Net from checkpoint                                        sdxl_model_util.py:196
2024-05-15 19:11:37 INFO     U-Net: <All keys matched successfully>                               sdxl_model_util.py:202
2024-05-15 19:11:38 INFO     building text encoders                                               sdxl_model_util.py:205
2024-05-15 19:11:41 INFO     loading text encoders from checkpoint                                sdxl_model_util.py:258
2024-05-15 19:11:47 INFO     text encoder 1: <All keys matched successfully>                      sdxl_model_util.py:272
2024-05-15 19:12:15 INFO     text encoder 2: <All keys matched successfully>                      sdxl_model_util.py:276INFO     building VAE                                                         sdxl_model_util.py:279
2024-05-15 19:12:19 INFO     loading VAE from checkpoint                                          sdxl_model_util.py:284
2024-05-15 19:12:23 INFO     VAE: <All keys matched successfully>                                 sdxl_model_util.py:287
2024-05-15 19:12:36 INFO     Enable xformers for U-Net                                                train_util.py:2660
import network module: networks.lora
2024-05-15 19:12:40 INFO     [Dataset 0]                                                              train_util.py:2079INFO     caching latents.                                                          train_util.py:974INFO     checking cache validity...                                                train_util.py:984
100%|████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<?, ?it/s]INFO     caching latents...                                                       train_util.py:1021
100%|████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:37<00:00,  4.75s/it]
2024-05-15 19:13:19 INFO     create LoRA network. base dim (rank): 8, alpha: 1                               lora.py:810INFO     neuron dropout: p=None, rank dropout: p=None, module dropout: p=None            lora.py:811INFO     create LoRA for Text Encoder 1:                                                 lora.py:902INFO     create LoRA for Text Encoder 2:                                                 lora.py:902
2024-05-15 19:13:20 INFO     create LoRA for Text Encoder: 264 modules.                                      lora.py:910INFO     create LoRA for U-Net: 722 modules.                                             lora.py:918INFO     enable LoRA for text encoder                                                    lora.py:961INFO     enable LoRA for U-Net                                                           lora.py:966
prepare optimizer, data loader etc.
2024-05-15 19:13:24 INFO     use 8-bit AdamW optimizer | {}                                           train_util.py:3889
Traceback (most recent call last):File "E:\SD_WIN\kohya_ss\sd-scripts\sdxl_train_network.py", line 185, in <module>trainer.train(args)File "E:\SD_WIN\kohya_ss\sd-scripts\train_network.py", line 429, in trainunet = accelerator.prepare(unet)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\accelerator.py", line 1213, in prepareresult = tuple(File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\accelerator.py", line 1214, in <genexpr>self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\accelerator.py", line 1094, in _prepare_onereturn self.prepare_model(obj, device_placement=device_placement)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\accelerator.py", line 1334, in prepare_modelmodel = model.to(self.device)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 1160, in toreturn self._apply(convert)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 810, in _applymodule._apply(fn)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 810, in _applymodule._apply(fn)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 810, in _applymodule._apply(fn)[Previous line repeated 6 more times]File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 833, in _applyparam_applied = fn(param)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 1158, in convertreturn t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacty of 4.00 GiB of which 0 bytes is free. Of the allocated memory 10.68 GiB is allocated by PyTorch, and 226.95 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Traceback (most recent call last):File "C:\Python310\lib\runpy.py", line 196, in _run_module_as_mainreturn _run_code(code, main_globals, None,File "C:\Python310\lib\runpy.py", line 86, in _run_codeexec(code, run_globals)File "E:\SD_WIN\kohya_ss\venv\Scripts\accelerate.EXE\__main__.py", line 7, in <module>File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\commands\accelerate_cli.py", line 47, in mainargs.func(args)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 1017, in launch_commandsimple_launcher(args)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 637, in simple_launcherraise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
subprocess.CalledProcessError: Command '['E:\\SD_WIN\\kohya_ss\\venv\\Scripts\\python.exe', 'E:/SD_WIN/kohya_ss/sd-scripts/sdxl_train_network.py', '--config_file', 'E:/SD_WIN/kohya_ss/outputs/config_lora-20240515-190738.toml']' returned non-zero exit status 1.
19:16:29-337912 INFO     Training has ended.

二、ComfyUI之插件Lora-Training-in-Comfy(https://github.com/LarryJane491/Lora-Training-in-Comfy.git),顺道也安装一下Image-Captioning-in-ComfyUI(https://github.com/LarryJane491/Image-Captioning-in-ComfyUI.git)和Vector_Sculptor_ComfyUI(https://github.com/Extraltodeus/Vector_Sculptor_ComfyUI.git)

在“custom_nodes”下clone它下来,重启安装,一般大概率是没法顺顺利利的,自行安装一些库,我这边列一下xformers和pytorch几个需要注意的库,其他的随意吧

accelerate                0.29.3
library                   0.0.0              E:\SD_WIN\ComfyUI_windows_portable\ComfyUI\custom_nodes\Lora-Training-in-Comfy\sd-scripts
torch                     2.3.0+cu121
torchaudio                2.3.0+cu121
torchvision               0.18.0+cu121
xformers                  0.0.26.post1

xformers优先安装,使用

{venv}/Scripts/pip.exe install xformers --index-url --index-url https://download.pytorch.org/whl/cu121
然后根据pytorch的版本提示安装torchaudio和torchvision我的例子:{venv}/Scripts/pip.exe install xformers==0.0.26.post1 torch==2.3.0+cu121 torchaudio==2.3.0+cu121 torchvision==0.18.0+cu121 --index-url https://download.pytorch.org/whl/cu121

其次要到“custom_nodes/Lora-Training-in-Comfy/sd-scripts/library”目录下运行

{venv}/Scripts/pip.exe install -e .

后面这一步没做的话,可能会遇到library模块加不来,要是直接用线上的安装就傻眼了,大概率是对不上号的。

重新双击run_nvidia_gpu.bat运行ComfyUI,添加节点“LJRE/LORA/LORA training in ComfyUI”,SD1.5的LORA只需要改三个配置就可以运行了。

output_dir最好是相对run_nvidia_gpu.bat所在的路径,这样得到的lora不需要复制,重启ComfyUI就可以测试。

这个插件有个大问题,就是很多机器没法正常运行,哈哈,没错,是真的。我建议有两点:

1.更新sd-scripts,将原来删了,在同路径下运行

​
git clone https://github.com/kohya-ss/sd-scripts.git​

安装参考上面

2.修改train.py。 搜索"python -m accelerate",改为“{vevn-path}/python.exe -m accelerate”,vevn-path应该是run_nvidia_gpu.bat同目录下的python_embeded的绝对路径。(注:下载一键安装包,要是clone的版本应该自己知道venv路径的)

最后补充一张根据图片提取文本的流程图

用到Comfyui_image2prompt(https://github.com/zhongpei/Comfyui_image2prompt.git),这玩意要是完整几乎不太可能,低端机器下wd-swinv2-tagger-v3-hf足够了。等有空再聊聊这个插件的安装经历。

当然也可以安装其他的插件代替的,WD14是不太可能了,还有其他的插件可以考虑。

http://www.shuangfujiaoyu.com/news/21487.html

相关文章:

  • 上海大型网站建设公司排名个人网站开发网
  • 网站建设维护方案360广告推广平台
  • 网站开发制作入什么科目郑州seo排名公司
  • 建设电子商务网站的目的和意义东莞网络营销网络推广系统
  • 时事军事新闻网seo查询seo
  • 大淘客网站开发小红书怎么做关键词排名优化
  • wordpress和ss一起seo关键词平台
  • 山西建立网站营销策划新网站友链
  • 网站搭建网沧州网站运营公司
  • 会计上大额网站费如何做分录什么是网络营销?
  • 手机站喝茶影视设计一个简单的网页
  • 广州建网站比较有名的公司朝阳网站seo
  • java自己做网站百度最新推广产品
  • 网站pv是什么产品营销推广的方案
  • 求个免费网站好人有好报国内新闻今日头条
  • 做网站app需要懂些什么软件seo自动点击排名
  • 南阳网站制作价格sem竞价代运营
  • 400靓号手机网站建设百度云搜索资源入口
  • 自己怎么做外贸网站上海最新发布最新
  • flash型网站怎么做网上销售
  • ofbiz做的网站徐州做网站的公司
  • 微信公众 号平台官网网站seo优化免费
  • 云主机如何做网站长沙seo网络营销推广
  • 响应式网站底部菜单栏快速搭建网站的工具
  • 自己做的网站怎么传入外网爱站网长尾关键词搜索
  • 完成网站开发需要什么样技术百度打广告多少钱
  • 网络营销策略分哪几类seo最新教程
  • 邯郸网站设计报价怎么做百度关键词排名
  • 淘宝客必须做网站营销技巧在线完整免费观看
  • php怎样做网站的注删页面seo搜索引擎优化课程