当前位置: 首页 > news >正文

正规的镇江网站建设市场营销分析案例

正规的镇江网站建设,市场营销分析案例,网站制作一条龙,福建省建设工程注册管理中心网站分类预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测 目录分类预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测分类效果基本描述模型描述程序设计参考资料分类效果 基本描述 1.Matlab实现WOA-CNN-LSTM多特征分类预测&…

分类预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测

目录

    • 分类预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

1
2
3
4

基本描述

1.Matlab实现WOA-CNN-LSTM多特征分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于鲸鱼算法(WOA)优化卷积神经网络-长短期记忆网络(CNN-LSTM)分类预测,优化参数为,学习率,隐含层节点,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

模型描述

CNN提供了视觉数据的分层表示,CNN每一层的权重实际上学到了图像的某些成分,越高层,成分越具体。CNN将原始信号经过逐层的处理,依次识别出部分到整体。比如说人脸识别,CNN先是识别出点、边、颜色、拐角,再是眼角、嘴唇、鼻子,再是整张脸。CNN同一卷积层内权值共享,都为卷积核的权重。LSTM 模型是时间循环神经网络中的一种,LSTM 是在传统的循环神经网络(recurrentneural network, RNN)基础上引入输入门、遗忘门、输入门,解决了RNN 网络存在的长期依赖问题。

程序设计

  • 完整程序和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测
  • 完整程序和数据下载方式3(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的所有程序,数据订阅后私信我获取):MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a;  % Eq. (2.3) in the paperC=2*r2;      % Eq. (2.4) in the paperb=1;               %  parameters in Eq. (2.5)l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)p = rand();        % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5   if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.shuangfujiaoyu.com/news/20913.html

相关文章:

  • 榆林市住房和城市建设局网站线上营销推广方式
  • 自己搭建服务器做网站2020年关键词排名
  • 帮人做传销网站违法吗百度品牌广告
  • 有多少人自己做电影网站推广营销app
  • 进出口贸易网西安网站优化
  • 江苏个人网站备案要求抖音怎么推广
  • wordpress仿砍柴网seo网络推广公司
  • 推广网站概况seo 网站优化推广排名教程
  • 网站雪花代码襄阳网站seo
  • 潍坊做电商的网站建设线上商城的推广方案
  • magento跨境b2b网站建设seo是什么味
  • 网络赚钱平台站长工具seo综合查询下载
  • 南宁哪个公司做网站建设黑帽seo优化
  • 学做家常菜的网站有哪些人工智能培训班
  • wordpress 反应慢昆明自动seo
  • 番禺区保安服务公司seo做什么网站赚钱
  • 建设银行官方网站网页版上海关键词排名提升
  • 四川省城乡住房建设部网站首页搜索引擎优化不包括
  • 系统测试包括哪些内容优化大师官网下载安装
  • 网站一个按钮如何做跳转其他链接关键词seo报价
  • wordpress新站SEO优化西安做网页的公司
  • php交友网站开发实例关键词广告
  • 更新wordpress 504网站seo 优化
  • 网站的建设成本的账务处理第一接单网app地推和拉新
  • 门户网站建设依据今日头条网站推广
  • 企业建设网站费用百度技术培训中心
  • 提升网站流量的方法新闻实时报道
  • 网站不备案可以做微信小程序么获客软件排名前十名
  • 网站建设网络推广书生长春百度网站优化
  • 网页设计作业网站素材和效果图百度搜索 手机