当前位置: 首页 > news >正文

永嘉网站制作哪家好seo运营是做什么的

永嘉网站制作哪家好,seo运营是做什么的,包头手机网站建设,秦皇岛政府网站官网很多算法比赛经常会遇到不同的物体产生同含义的时间序列信息,比如不同位置的时间序列信息,风力发电、充电桩用电。经常会遇到该如此场景,对所有数据做统一处理喂给模型,模型很难学到区分信息,因此设计如果对不同位置的…

       很多算法比赛经常会遇到不同的物体产生同含义的时间序列信息,比如不同位置的时间序列信息,风力发电、充电桩用电。经常会遇到该如此场景,对所有数据做统一处理喂给模型,模型很难学到区分信息,因此设计如果对不同位置的装置做嵌入操作,这也是本文书写的主要目的之一,如果对不同位置装置的时序数据做模型呢?

      RGU: 循环神经网络模块,经常用于处理时序数据。

     Embedding : 是 PyTorch 中的一个类,用于将离散的整数序列映射为连续的向量表示。

使用下面比赛的数据作为一个处理的DEMO:

 2023中国华录杯数据湖算法大赛

import package

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
#import tushare as ts
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoaderfrom sklearn.preprocessing import LabelEncoderimport matplotlib.pyplot as plt
import tqdm
import sys
import os
import gc
import argparse
import warningswarnings.filterwarnings('ignore')

load data

class Config():#data_path = '../data/data1/train/power.csv'timestep = 14  # 时间步长,就是利用多少时间窗口batch_size = 32  # 批次大小feature_size = 1  # 每个步长对应的特征数量,这里只使用1维,每天的风速hidden_size = 56  # 隐层大小output_size = 1  # 由于是单输出任务,最终输出层大小为1,预测未来1天风速num_layers = 1  # lstm的层数epochs = 10 # 迭代轮数best_loss = 0 # 记录损失learning_rate = 0.00003 # 学习率model_name = 'lstm' # 模型名称save_path = './{}.pth'.format(model_name) # 最优模型保存路径
config = Config()train_df = pd.read_csv('../初赛数据/phase1_train.csv')
test_df = pd.read_csv('../初赛数据/phase1_test.csv')labelEncoder = LabelEncoder()
train_df['line_label'] = labelEncoder.fit_transform(train_df['line'])
#labelEncoder.transform(test_df['line'])train_df = train_df.sort_values(["line",'date']).reset_index(drop=True)train_df.line.unique()
array(['L01', 'L02', 'L03', 'L04', 'L05', 'L06', 'L08', 'L09', 'L10'],dtype=object)

使用前面14天预测未来第七天:

1,2,3,4,5,6,7,8,9,10,11,12,13,14 -》14+7

【1,2,3,4,5,6,7,8,9,10,11,12,13,14】+1  -》 14+7+1

。。。。。

#train_df.head()
his_pow_feats = []
for i in range(config.timestep):train_df[f'shift_{7+i}'] = train_df.groupby("line_label")['passenger_flow'].shift(7+i)his_pow_feats.append(f'shift_{7+i}')
train_df_drop_na = train_df[train_df[his_pow_feats].isna().sum(axis=1)==0]class MyDataSet(Dataset):def __init__(self,train_df_drop_na,his_pow_feats):"""train_df_drop_na"""self.train_df = train_df_drop_na.reset_index(drop=True)def __len__(self):return len(self.train_df)def __getitem__(self,item):label = self.train_df.loc[item,'passenger_flow']id_encoder = self.train_df.loc[item,'line_label']his_feats_list = self.train_df.loc[item,his_pow_feats].values.tolist()return {"input_ids":torch.tensor(id_encoder,dtype=torch.long),"his_feats":torch.as_tensor(his_feats_list ,dtype=torch.float32).unsqueeze(-1),"labels":torch.tensor(label,dtype=torch.float32)}RANDOM_SEED = 1023
df_train, df_test = train_test_split(train_df_drop_na, test_size=0.2, random_state=RANDOM_SEED)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)
df_train.shape, df_val.shape, df_test.shapedef create_data_loader(train_df_drop_na,his_pow_feats,batch_size=32):ds = MyDataSet(train_df_drop_na,his_pow_feats)return DataLoader(ds,batch_size=batch_size)
BATCH_SIZE = 32
train_data_loader = create_data_loader(df_train,his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)
val_data_loader = create_data_loader(df_val, his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)
test_data_loader = create_data_loader(df_test,his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)#train_df[cols]
# 7.定义LSTM网络
class GRUModel(nn.Module):def __init__(self, feature_size, hidden_size, num_layers, output_size):super(GRUModel, self).__init__()self.hidden_size = hidden_size  # 隐层大小self.num_layers = num_layers  # lstm层数# feature_size为特征维度,就是每个时间点对应的特征数量,这里为1self.gru = nn.GRU(feature_size, hidden_size, num_layers, batch_first=True,bidirectional=True)self.layer_norm = nn.LayerNorm(hidden_size*2)self.fc = nn.Linear(hidden_size*2+2, output_size)self.embedding = nn.Embedding(9, 2)def forward(self, x,id_label, hidden=None):#print(x.shape)batch_size = x.shape[0] # 获取批次大小 batch, time_stamp , feat_size# 初始化隐层状态h_0 = x.data.new(2*self.num_layers, batch_size, self.hidden_size).fill_(0).float()if hidden is not None:h_0 = hidden#print(h_0.size)# GRU 运算output, hidden = self.gru(x,h_0)output = self.layer_norm(output)last_output = output[:, -1, :]#print('output',last_output.shape)embed = self.embedding(id_label)#print("embed",embed.shape)#print('output',output.shape)concatenated = torch.cat((embed, last_output), dim=1)#print(concatenated.shape)# 全连接层output = self.fc(concatenated)  # 形状为batch_size * timestep, 1#print(output.shape)# 我们只需要返回最后一个时间片的数据即可return output
model = GRUModel(config.feature_size, config.hidden_size, config.num_layers, config.output_size)  # 定义LSTM网络loss_function = nn.L1Loss()  # 定义损失函数
# class MAPELoss(nn.Module):
#     def __init__(self):
#         super(MAPELoss, self).__init__()#     def forward(self, y_pred, y_true):
#         epsilon = 1e-8  # 用于避免除以零的小常数
#         absolute_error = torch.abs(y_true - y_pred)
#         relative_error = absolute_error / (torch.abs(y_true) + epsilon)
#         mape = torch.mean(relative_error) * 100
#         return mape
# loss_function = MAPELoss()  # 定义损失函数optimizer = torch.optim.AdamW(model.parameters(), lr=0.01)  # 定义优化器
from tqdm import tqdm# 8.模型训练
for epoch in range(500):model.train()running_loss = 0train_bar = tqdm(train_data_loader)  # 形成进度条for data in train_bar:x_train, y_train = data['his_feats'], data['labels']  # 解包迭代器中的X和Yoptimizer.zero_grad()y_train_pred = model(x_train,data['input_ids'])loss = loss_function(y_train_pred, y_train.reshape(-1, 1))loss.backward()optimizer.step()running_loss += loss.item()train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,config.epochs,loss)# 模型验证model.eval()test_loss = 0with torch.no_grad():test_bar = tqdm(val_data_loader)for data in test_bar:x_test, y_test = data['his_feats'], data['labels']y_test_pred = model(x_test, data['input_ids'])test_loss = loss_function(y_test_pred, y_test.reshape(-1, 1))if test_loss < config.best_loss:config.best_loss = test_losstorch.save(model.state_dict(), save_path)print('Finished Training')

http://www.shuangfujiaoyu.com/news/19906.html

相关文章:

  • 无锡网站建设动态樱桃bt磁力天堂
  • 建设一个公司网站需要多少钱河南整站百度快照优化
  • 网站推广费用怎么做分录百度招商客服电话
  • php网站开发教材如何网络营销自己的产品
  • 区域销售网站什么做百度的网页地址
  • b2c电子商务模式指的是日照网站优化公司
  • 付运费送东西的网站怎么做百度推广官网登录
  • php做网站商城系统怎么样内江seo
  • 网站设计大概多少钱营销策略ppt
  • 5118站长平台网站快速排名优化价格
  • 建设网站建设安全培训平台seo营销推广服务公司
  • 网页设计与网站建设考试seo百度站长工具查询
  • 公司网站怎么做备案信息国内seo公司
  • 网站建设的收费百度推广关键词
  • 黄酒的电商网页设计网站深圳市seo点击排名软件价格
  • wordpress版本可以恢复旧版本东莞网络优化哪家好
  • 公司建设一个网站有什么好处百度搜索引擎的网址
  • 中国网站制作企业排行榜金华seo全网营销
  • 如何做公司o2o网站专业网络推广软件
  • 旅游网站建设目标搜索引擎优化网站的网址
  • 广东公司响应式网站建设设计宁波谷歌seo推广公司
  • 武汉做营销型网站建设抚顺网络推广
  • 盘锦做网站友情链接买卖代理
  • 苏州正规网站建设概况百度网页版登录
  • web制作重庆网站seo多少钱
  • 网站优化seo推广服务百度seo公司哪家最好
  • 商业网站用什么语言做海外推广代理公司
  • php创建一个网站东营百度推广公司
  • 沈阳建设公司网站网络营销期末考试试题及答案
  • 最超值的郑州网站建设常用的网络推广手段有哪些