当前位置: 首页 > news >正文

wordpress多站点 seo推广下载

wordpress多站点 seo,推广下载,移动网站开发工具,上海住房和城乡建设委员会官方网站一、方法详解 首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。 有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。 PyTorch torch.stack() method joins (concaten…

一、方法详解

首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。
在这里插入图片描述
有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。

PyTorch torch.stack() method joins (concatenates) a sequence of tensors (two or more tensors) along a new dimension. It inserts new dimension and concatenates the tensors along that dimension. This method joins the tensors with the same dimensions and shape. We could also use torch.cat() to join tensors But here we discuss the torch.stack() method.

torch.stack方法用于沿着一个新的维度 join(也可称为cat)一系列的张量(可以是2个张量或者是更多),它会插入一个新的维度,并让张量按照这个新的维度进行张量的cat操作。值得注意的是:张量序列中的张量必须要有相同的shape和dimension。

在这里插入图片描述

Parameters
tensors:张量序列,也就是要进行stack操作的对象,可以有很多个张量。
dim:按照dim的方式对这些张量进行stack操作,也就是你要按照哪种堆叠方式对张量进行堆叠。dim的取值范围为闭区间[0,输入Tensor的维数]
return
堆叠后的张量

只通过理论对方法进行解释说明是不够直观的,下面会通过大量的示例对torch.stack方法进行解析!

二、案例解析

2.1 案例1:2个一维tensor进行stack操作

  • 程序
 x = t.tensor([1,2,3,4])y = t.tensor([5,6,7,8])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)
  • 运行结果
torch.Size([4])
torch.Size([4])tensor([[1, 2, 3, 4],[5, 6, 7, 8]])
torch.Size([2, 4])tensor([[1, 5],[2, 6],[3, 7],[4, 8]])
torch.Size([4, 2])
  • 图解
    在这里插入图片描述

2.2 案例2:2个二维tensor进行stack操作

  • 程序
 x = t.tensor([[1,2,3],[4,5,6]])y = t.tensor([[7,8,9],[10,11,12]])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)z3 = t.stack((x,y), dim=2)print(z3)print(z3.shape)
  • 运行结果
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1,  2,  3],[ 7,  8,  9]],[[ 4,  5,  6],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1,  7],[ 2,  8],[ 3,  9]],[[ 4, 10],[ 5, 11],[ 6, 12]]])
torch.Size([2, 3, 2])
  • 图解
    在这里插入图片描述

2.3 案例3:多个二维tensor进行stack操作

  • 程序
x = torch.tensor([[1,2,3],[4,5,6]])
y = torch.tensor([[7,8,9],[10,11,12]])
z = torch.tensor([[13,14,15],[16,17,18]])
print(x.shape)
print(y.shape)
print(z.shape)r1 = torch.stack((x,y,z),dim=0)
print(r1)
print(r1.shape)r2 = torch.stack((x,y,z),dim=1)
print(r2)
print(r2.shape)r3 = torch.stack((x,y,z),dim=2)
print(r3)
print(r3.shape)
  • 运行结果
torch.Size([2, 3])
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]],[[13, 14, 15],[16, 17, 18]]])
torch.Size([3, 2, 3])tensor([[[ 1,  2,  3],[ 7,  8,  9],[13, 14, 15]],[[ 4,  5,  6],[10, 11, 12],[16, 17, 18]]])
torch.Size([2, 3, 3])tensor([[[ 1,  7, 13],[ 2,  8, 14],[ 3,  9, 15]],[[ 4, 10, 16],[ 5, 11, 17],[ 6, 12, 18]]])
torch.Size([2, 3, 3])
  • 图解

2.4 案例4:2个三维tensor进行stack操作

  • 程序
x = torch.tensor([[[1,2,3],[4,5,6]],[[2,3,4],[5,6,7]]])
y = torch.tensor([[[7,8,9],[10,11,12]],[[8,9,10],[11,12,13]]])
print(x.shape)
print(y.shape)
z1 = torch.stack((x,y),dim=0)
print(z1)
print(z1.shape)
z2 = torch.stack((x,y),dim=1)
print(z2)
print(z2.shape)
z3 = torch.stack((x,y),dim=2)
print(z3)
print(z3.shape)
z4 = torch.stack((x,y),dim=3)
print(z4)
print(z4.shape)
  • 运行结果
torch.Size([2, 2, 3])
torch.Size([2, 2, 3])tensor([[[[ 1,  2,  3],[ 4,  5,  6]],[[ 2,  3,  4],[ 5,  6,  7]]],[[[ 7,  8,  9],[10, 11, 12]],[[ 8,  9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]],[[[ 2,  3,  4],[ 5,  6,  7]],[[ 8,  9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  2,  3],[ 7,  8,  9]],[[ 4,  5,  6],[10, 11, 12]]],[[[ 2,  3,  4],[ 8,  9, 10]],[[ 5,  6,  7],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  7],[ 2,  8],[ 3,  9]],[[ 4, 10],[ 5, 11],[ 6, 12]]],[[[ 2,  8],[ 3,  9],[ 4, 10]],[[ 5, 11],[ 6, 12],[ 7, 13]]]])
torch.Size([2, 2, 3, 2])
  • 图解

参考文献

[1]https://blog.csdn.net/flyingluohaipeng/article/details/125034358
[2]https://www.geeksforgeeks.org/python-pytorch-stack-method/
[3]https://www.bing.com/search?q=torch.stack&form=ANNTH1&refig=653766bda2d540398dfb83d482cd33cd

http://www.shuangfujiaoyu.com/news/17326.html

相关文章:

  • 离石市网站建设公司网站推广优化排名公司
  • 如何做网站旅游产品分析推广用哪个平台效果好
  • 免费的网站免安装微信运营方案
  • 怎么做宣传网站深圳网络营销推广培训
  • 网站开发用盗版犯法google浏览器下载
  • 廊坊怎么做网站it培训机构哪家好
  • wordlink网站开发济南seo公司报价
  • 湛江门户网站如何做电商 个人
  • 怎么直接做免费网站三亚百度推广开户
  • 网站建设课设总结优化网站内容
  • 网站建设活动策划微博推广怎么做
  • 一个空间两个网站对seoapp推广公司
  • 做网站的模版东莞疫情最新消息今天中高风险区
  • 不通过网站可以做360全景吗网站推广平台搭建
  • 正规货源网站大全营销方案ppt
  • 京东联盟的网站怎么做的全球新闻最新消息
  • 搞网站建设赚钱不百度新闻官网
  • 个人动漫网站怎么做页面手机关键词seo排名优化
  • wordpress文章中添加视频seo服务 文库
  • 网站设计与建设word设计理念热搜榜排名今日
  • 凡客服装有限公司桂平seo关键词优化
  • localhost怎么做网站爱营销电信版下载app最新版
  • 国家电网 两学一做 网站太原网站建设优化
  • 免费咨询医生妇科医生搜索关键词优化
  • 个人网站的投稿平台广州seo
  • 深圳宝安做网站的公司网站按天扣费优化推广
  • 网站开发团队需配备什么岗位百度金融
  • ps做网站的视频seo优化与sem推广有什么关系
  • 做采集网站赚钱济南百度推广优化
  • 做仿牌网站被封有哪些免费网站可以发布广告