当前位置: 首页 > news >正文

.net做网站的方式百度seo有用吗

.net做网站的方式,百度seo有用吗,做 网络网站,佛山中小企业网站建设509. 斐波那契数 简单 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n - 1) F(n - 2),…

509. 斐波那契数

简单
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。

class Solution {public int fib(int n) {if (n < 2) return n;int dpa = 0;int dpb = 1;int dpc = 0;for (int i = 2; i <= n; i++) {dpc = dpa + dpb;dpa = dpb;dpb = dpc;}return dpc;}
}

70. 爬楼梯

简单
提示
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

没做过的话觉得好难,其实是有规律的,因为每次只能跳一或者两个台阶,所以,要想跳到f(n),就必须跳到f(n - 1) 或者 f(n - 2),所以f(n) = f(n - 1) + f(n - 2) , 有人可能会讲,f(n - 1) 和 f(n - 2) 里有没有重合的跳法,因为f(n - 1) 必然经过 f(n - 2), 这就有点问题了,因为f(x) 表示爬到第 x 级台阶的方案数,题目让你求得是方案数,不是爬楼梯的步数。f(n) = f(n - 1) + f(n - 2) 不能再加2哈,因为你到了f(n - 1)只有这种方案能上楼,f(n - 2)同理,记住,是方案的数量,不是上楼的步数。不要去管f(n - 1) 和f(n - 2),有联系,是有联系,可以没让你去管啊,要管的事f(n) 的算法。说再多没用,自己模拟前4个台阶怎么算的就明白了。

在这里插入图片描述

在这里插入图片描述

class Solution {public int climbStairs(int n) {if (n < 3) return n;int step1 = 1;int step2 = 2;int step3 = 0;for (int i = 3; i <= n; i++) {step3 = step1 + step2;step1 = step2;step2 = step3;}return step3;}
}

746. 使用最小花费爬楼梯

简单
提示
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费

// 这个题也可以不用dp数组,就三个变量就行
class Solution {public int minCostClimbingStairs(int[] cost) {// dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]int[] dp = new int[cost.length + 1]; // 把顶层也算上,多分配一个空间dp[0] = dp[1] = 0; // 可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯,说明代价是0for (int i = 2; i <= cost.length; i++) {// 要么是从下面一个台阶跳上来的,要么是从下面两个台阶跳上来的,选代价最小的就行dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i- 2]);}return dp[cost.length];}
}

用这个题来捋捋思路:

1.确定dp数组以及下标的含义

使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

对于dp数组的定义,大家一定要清晰!

2.确定递推公式

可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

3.dp数组如何初始化

看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。

这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。

新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。

所以初始化 dp[0] = 0,dp[1] = 0;

4.确定遍历顺序

最后一步,递归公式有了,初始化有了,如何遍历呢?

本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。 例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢? 以及在使用一维dp数组的时候遍历背包容量为什么要倒序呢?

这些都与遍历顺序息息相关。当然背包问题后续「代码随想录」都会重点讲解的!

5.举例推导dp数组

http://www.shuangfujiaoyu.com/news/16823.html

相关文章:

  • 网店代运营费用多少钱百度seo软件
  • 淄博抖音关键词优化曲靖seo
  • 网上做问卷调查赚钱哪些网站好百度爱采购平台官网
  • 做网站商机宁德市有几个区几个县
  • 外贸网站建设设计品牌策划公司排行榜
  • 网站服务器 同步备份google play 安卓下载
  • 荣成市有做网站的吗百度爱采购优化
  • 哈尔滨门户网站建站网站推广优化设计方案
  • 备案 网站名称怎么写智能建站网站模板
  • 网站建设优化网站排名郑州抖音推广
  • seo优化方案书杭州做seo的公司
  • 商丘网 商丘网络第一媒体seo培训机构排名
  • 做网站怎么插音频衡阳百度seo
  • wordpress 整合北京seo服务销售
  • 公司做宣传网站app推广接单
  • 湘潭网站建设 安全还踏实磐石网络视频号广告推广
  • hao123主页是哪个软件系统清理优化工具
  • 做logo专用的网站是哪个百度秒收录软件
  • 上海电子商务网站制作千锋教育
  • 专业网站建设微信官网开发陕西seo优化
  • 云南网站建设电话seo建站公司
  • 北京建设部幼儿园网站电话营销
  • 注册公司网上申请平台重庆seo
  • 江苏最新消息今天实时怎样优化标题关键词
  • 班级网页制作附子seo教程
  • 国土资源集约化网站群建设通知百度指数是搜索量吗
  • 大数据时代的智能营销全网seo优化电话
  • 虚拟机怎么做网站app推广接单平台
  • 网站如何做se手机端竞价恶意点击
  • 在网上怎样卖货合肥seo优化外包公司