当前位置: 首页 > news >正文

秦皇岛商联网络科技有限公司百度seo优化排名如何

秦皇岛商联网络科技有限公司,百度seo优化排名如何,西安到北京航班时刻表,不想用wordpress1、求数列通项 (1)转化为求矩阵的幂次问题 例:求斐波那契数列的通项公式 已知斐波那契数列满足: F k 2 F k 1 F k F_{k2}F_{k1}F_{k} Fk2​Fk1​Fk​ (a) 降阶:将二阶差分方程转化为一阶…

1、求数列通项

(1)转化为求矩阵的幂次问题

例:求斐波那契数列的通项公式
已知斐波那契数列满足: F k + 2 = F k + 1 + F k F_{k+2}=F_{k+1}+F_{k} Fk+2=Fk+1+Fk

(a) 降阶:将二阶差分方程转化为一阶差分方程组

{ F k + 1 = F k + 1 F k + 2 = F k + 1 + F k \begin{cases} F_{k+1}=F_{k+1}\\ F_{k+2}=F_{k+1}+F_{k} \end{cases} {Fk+1=Fk+1Fk+2=Fk+1+Fk 写成矩阵形式: a k + 1 = A a k k = 0 , 1 , 2 , . . . a_{k+1}=Aa_{k}\ k=0,1,2,... ak+1=Aak k=0,1,2,...
其中 A = ( 0 1 1 1 ) , a k = ( F k F k + 1 ) , a 0 = ( 1 1 ) A=\left(\begin{matrix} 0&1\\1&1 \end{matrix}\right)\ , \ a_k=\left(\begin{matrix} F_k\\F_{k+1} \end{matrix}\right)\ , \ a_0=\left(\begin{matrix} 1\\1 \end{matrix}\right) A=(0111) , ak=(FkFk+1) , a0=(11)
推导得有: a k = A k a 0 a_k=A^ka_0 ak=Aka0

(b) 求矩阵的Jordan标准形
矩阵的特征方程为: λ 2 − λ − 1 \lambda^2-\lambda-1 λ2λ1,特征根为 1 ± 5 2 \frac{1\pm \sqrt5}{2} 21±5 ,特征向量为 , ( 1 ± 5 2 1 ) \ , \ \left(\begin{matrix} \frac{1\pm \sqrt5}{2}\\1 \end{matrix}\right)  , (21±5 1),取特征向量为列向量构成矩阵 P P P
则有 A = P ( 1 + 5 2 0 0 1 − 5 2 ) P − 1 A=P\left(\begin{matrix} \frac{1+ \sqrt5}{2}&0\\0&\frac{1- \sqrt5}{2} \end{matrix}\right)P^{-1} A=P(21+5 00215 )P1
从而 a k = A k a 0 a_k=A^ka_0 ak=Aka0,斐波那契数列的通项公式为 a k a_k ak的第一行元素。

(c) python实现

import sympy as sp
sp.var('k',positive=True,integre=True)
a=sp.Matrix([[0,1],[1,1]])
val=a.eigenvals()
vec=a.eigenvects()
P,D=a.diagonalize()
ak=P@(D**k)@(P.inv())
F=ak@sp.Matrix([1,1])
print(sp.latex(sp.simplify(F[0])))

求出通项公式为: F k = 2 − k ( 2 ( 1 − 5 ) k + 5 ( 1 + 5 ) k + 3 ( 1 + 5 ) k ) 5 + 5 F^k=\frac{2^{- k} \left(2 \left(1 - \sqrt{5}\right)^{k} + \sqrt{5} \left(1 + \sqrt{5}\right)^{k} + 3 \left(1 + \sqrt{5}\right)^{k}\right)}{\sqrt{5} + 5} Fk=5 +52k(2(15 )k+5 (1+5 )k+3(1+5 )k)
取值:

f = sp.lambdify(k,F[0])
print(f(9))

(2)特征根法求通项

由于斐波那契数列的特征根是互异的,故可设通项为:
F k = c 1 ( 1 + 5 2 ) k + c 2 ( 1 − 5 2 ) k F_k=c_1(\frac{1+\sqrt5}{2})^k+c_2(\frac{1-\sqrt5}{2})^k Fk=c1(21+5 )k+c2(215 )k
代入初值条件求解上述二元一次方程: F 0 = F 1 = 1 F_0=F_1=1 F0=F1=1
{ c 1 + c 2 = 1 c 1 ( 1 + 5 2 ) + c 2 ( 1 − 5 2 ) = 1 \begin{cases} c_1+c_2=1\\ c_1(\frac{1+\sqrt5}{2})+c_2(\frac{1-\sqrt5}{2})=1 \end{cases} {c1+c2=1c1(21+5 )+c2(215 )=1
解得 { c 1 = 1 2 + 5 10 c 2 = 1 2 − 5 10 \begin{cases} c1=\frac{1}{2}+\frac{\sqrt5}{10}\\c2=\frac{1}{2}-\frac{\sqrt5}{10} \end{cases} {c1=21+105 c2=21105 ,从而得到通项公式。

python实现:

import sympy as sp
x=sp.symbols('x')
c=sp.symbols('c:2')
f=sp.Eq(x**2,x+1)
vals=list(sp.solveset(f))
eq1=c[0]+c[1]-1
eq2=c[0]*vals[0]+c[1]*vals[1]-1
s=sp.solve([eq1,eq2])

(3)利用rsolve函数求解有理系数单变量递推式

import sympy as sp
k=sp.symbols('k')
y=sp.Function('y')
f=y(k+2)-y(k+1)-y(k)
F=sp.rsolve(f,y(k),{y(0):1, y(1):1})

2、Leslie种群模型

3、Pagerank算法

http://www.shuangfujiaoyu.com/news/29149.html

相关文章:

  • 做瞹瞹瞹免费网站宁波seo外包推广渠道
  • 网站title如何修改中山口碑seo推广
  • php做购物网站八大营销方式有哪几种
  • 如何设置自己的网站谷歌全球营销
  • 沧州做英文网站哪家公司好学seo推广
  • 网站友情链接怎么弄专门看网站的浏览器
  • wordpress 哪些网站关于搜索引擎的搜索技巧
  • 网站产品标题怎么写著名的网络营销案例
  • 学做效果图网站网页制作用什么软件做
  • java 建设一个网站百度霸屏培训
  • 做网站 商标分类自己做网站建设
  • 做网站开发的经营范围如何建网站要什么条件
  • 龙岗 网站建设免费创建个人博客网站
  • 做建材交易网站的上市公司个人对网络营销的看法
  • 安卓市场网站建设seo网站优化培训怎么样
  • 网站简介如何做的有创意灰色项目推广渠道
  • 做网站宁夏微信软文模板
  • 销售机械设备做网站青岛网站优化公司
  • 专门做简历的网站杭州网站运营十年乐云seo
  • 免费网站空间怎么做网站旅游景区网络营销案例
  • 手机网站字体大小规范凡科建站登录
  • 保定免费做网站上海发布微信公众号
  • 美国室内设计网搜狗网站seo
  • 苏州吴中区专业做网站如何建站
  • 网站上的流动图片怎么做的网络推广app
  • 学网站建设要多少钱常州seo收费
  • 杭州做网站的公司网站域名ip查询
  • 石家庄网站建设推广公司报价百度一下搜索
  • 网页设计页面链接龙岗seo网络推广
  • wordpress建立企业网站人民网今日头条