当前位置: 首页 > news >正文

万网 阿里云搜索 引擎优化

万网 阿里云,搜索 引擎优化,深圳燃气公司电话客服24小时电话,模板网站可以优化吗1. 矩阵与标量 矩阵(张量)每一个元素与标量进行操作。 import torch a torch.tensor([1,2]) print(a1) >>> tensor([2, 3]) 2. 哈达玛积(Mul) 两个相同尺寸的张量相乘,然后对应元素的相乘就是这个哈达玛…

1. 矩阵与标量

矩阵(张量)每一个元素与标量进行操作。

import torch
a = torch.tensor([1,2])
print(a+1)
>>> tensor([2, 3])

2. 哈达玛积(Mul)

两个相同尺寸的张量相乘,然后对应元素的相乘就是这个哈达玛积。

a = torch.tensor([1,2])
b = torch.tensor([2,3])
print(a*b)
print(torch.mul(a,b))
>>> tensor([2, 6])
>>> tensor([2, 6])

这个torch.mul()和*以及torch.dot()是等价的

当然,除法也是类似的:

a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.])
print(a/b)
print(torch.div(a/b))
>>> tensor([0.5000, 0.6667])
>>> tensor([0.5000, 0.6667])

我们可以发现的torch.div()其实就是/, 类似的:torch.add就是+,torch.sub()就是-,不过符号的运算更简单常用。

3. 矩阵乘法

在代码中矩阵相乘有三种写法:

  • torch.mm()
  • torch.matmul()
  • @
a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.]).view(1,2)
print(torch.mm(a, b))
print(torch.matmul(a, b))
print(a @ b)

输出结果:

tensor([[2., 3.],[4., 6.]])
tensor([[2., 3.],[4., 6.]])
tensor([[2., 3.],[4., 6.]])

上面的是对二维矩阵而言的,假如参与运算的是一个多维张量,那么只有torch.matmul()可以使用

torch.mv()等价于torch.mm(),不过不同的是mv适用与矩阵和向量相乘

在多维张量中,参与矩阵运算的其实只有后两个维度,前面的维度其实就像是索引一样,举个例子:

a = torch.rand((1,2,64,32))
b = torch.rand((1,2,32,64))
print(torch.matmul(a, b).shape)
>>> torch.Size([1, 2, 64, 64])

4. 幂与开方

a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.])
c1 = a ** b
c2 = torch.pow(a, b)
print(c1,c2)
>>> tensor([1., 8.]) tensor([1., 8.])

5. 对数运算

pytorch中log是以e自然数为底数的,然后log2和log10才是以2和10为底数的运算。

import numpy as np
print('对数运算')
a = torch.tensor([2,10,np.e])
print(torch.log(a))
print(torch.log2(a))
print(torch.log10(a))
>>> tensor([0.6931, 2.3026, 1.0000])
>>> tensor([1.0000, 3.3219, 1.4427])
>>> tensor([0.3010, 1.0000, 0.4343]) 

6. 近似值运算

  • .ceil() 向上取整
  • .floor()向下取整
  • .trunc()取整数
  • .frac()取小数
  • .round()四舍五入
a = torch.tensor(1.2345)
print(a.ceil())
>>>tensor(2.)
print(a.floor())
>>> tensor(1.)
print(a.trunc())
>>> tensor(1.)
print(a.frac())
>>> tensor(0.2345)
print(a.round())
>>> tensor(1.)

7. 剪裁运算

这个是让一个数,限制在你自己设置的一个范围内[min,max],小于min的话就被设置为min,大于max的话就被设置为max。这个操作在一些对抗生成网络中,好像是WGAN-GP,通过强行限制模型的参数的值。

a = torch.rand(5)
print(a)
print(a.clamp(0.3,0.7))

输出为:

tensor([0.5271, 0.6924, 0.9919, 0.0095, 0.0340])
tensor([0.5271, 0.6924, 0.7000, 0.3000, 0.3000])

http://www.shuangfujiaoyu.com/news/26848.html

相关文章:

  • 建设银行预约纪念钞网站怎么做网站链接
  • 电脑上自己做科目一的网站竞价托管信息
  • 网站免费推广策划方案芭嘞seo
  • java jsp做网站seo关键词排名优化的方法
  • 资深做网站公司手机自动排名次的软件
  • 公司外贸网站怎么做在线培训管理系统
  • 西安网站制作建设网络推广接单平台
  • 家居网站建设渠道销售管理
  • 那些空号检测网站是怎么做的网站竞价推广托管公司
  • 呼和浩特市做网站公司好的seo中文含义
  • 地方招聘网站如何做推广广告软文是什么意思
  • 未央免费做网站百度广告投放平台官网
  • 网页设计素材网站百度广告销售
  • 北京品牌建设网站公司线下推广方法及策略
  • js怎么做打开网站就复制内容广州排名推广
  • 国外网站源代码关键词汇总
  • 全国网站排名最火网站排名
  • 河池做网站百度在线客服中心
  • 临沂小程序开发公司哪家好seo竞争对手分析
  • 网站首页模板免费下载项目外包平台
  • 佛山网站建设 奇锐科技百度首页清爽版
  • dede电影网站模板世界500强企业
  • 镇江网站建设推广公司做seo推广公司
  • 酒店招聘做的好的网站软文网站发布平台
  • 酒店网站建设深圳seo网站推广方案
  • 网站微信认证费用多少杭州最专业的seo公司
  • 单页网站与传统网站的区别广州seo外包多少钱
  • 网站制作设计seo招聘信息
  • 重庆秀山网站建设怎样推广自己的产品
  • 做二手网站赚钱不免费收录网站